Suppr超能文献

通过独特的嚎叫识别未知的印度狼:作为一种非侵入性调查方法的潜力。

Identifying unknown Indian wolves by their distinctive howls: its potential as a non-invasive survey method.

机构信息

Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, 248001, India.

Animal Behaviour, Cognition and Welfare Group, University of Lincoln, Lincoln, UK.

出版信息

Sci Rep. 2021 Mar 31;11(1):7309. doi: 10.1038/s41598-021-86718-w.

Abstract

Previous studies have posited the use of acoustics-based surveys to monitor population size and estimate their density. However, decreasing the bias in population estimations, such as by using Capture-Mark-Recapture, requires the identification of individuals using supervised classification methods, especially for sparsely populated species like the wolf which may otherwise be counted repeatedly. The cryptic behaviour of Indian wolf (Canis lupus pallipes) poses serious challenges to survey efforts, and thus, there is no reliable estimate of their population despite a prominent role in the ecosystem. Like other wolves, Indian wolves produce howls that can be detected over distances of more than 6 km, making them ideal candidates for acoustic surveys. Here, we explore the use of a supervised classifier to identify unknown individuals. We trained a supervised Agglomerative Nesting hierarchical clustering (AGNES) model using 49 howls from five Indian wolves and achieved 98% individual identification accuracy. We tested our model's predictive power using 20 novel howls from a further four individuals (test dataset) and resulted in 75% accuracy in classifying howls to individuals. The model can reduce bias in population estimations using Capture-Mark-Recapture and track individual wolves non-invasively by their howls. This has potential for studies of wolves' territory use, pack composition, and reproductive behaviour. Our method can potentially be adapted for other species with individually distinctive vocalisations, representing an advanced tool for individual-level monitoring.

摘要

先前的研究提出使用基于声学的调查来监测种群数量并估计其密度。然而,要降低种群估计的偏差,例如使用捕获-标记-再捕获,需要使用监督分类方法来识别个体,特别是对于像狼这样的稀疏种群,否则可能会被重复计数。印度狼(Canis lupus pallipes)的隐匿行为对调查工作构成了严重挑战,因此,尽管它们在生态系统中扮演着重要角色,但仍无法对其种群进行可靠估计。与其他狼一样,印度狼会发出嚎叫,在超过 6 公里的距离都能被探测到,这使它们成为声学调查的理想候选者。在这里,我们探讨了使用监督分类器来识别未知个体的方法。我们使用来自五只印度狼的 49 声嚎叫来训练一个监督的凝聚层次聚类(AGNES)模型,实现了 98%的个体识别准确率。我们使用另外四只狼的 20 声新嚎叫来测试我们模型的预测能力(测试数据集),结果分类准确率为 75%。该模型可以使用捕获-标记-再捕获来减少种群估计的偏差,并通过它们的嚎叫来跟踪个体狼。这对于研究狼的领地利用、群体组成和繁殖行为具有潜在的作用。我们的方法可以潜在地应用于具有独特叫声的其他物种,代表了个体水平监测的一种先进工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5da3/8012383/985584739910/41598_2021_86718_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验