Suppr超能文献

数据抢救:从灭绝中拯救环境数据。

Data rescue: saving environmental data from extinction.

机构信息

The Living Data Project, Canadian Institute of Ecology and Evolution, Vancouver, British Columbia, Canada.

School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA.

出版信息

Proc Biol Sci. 2022 Jul 27;289(1979):20220938. doi: 10.1098/rspb.2022.0938. Epub 2022 Jul 20.

Abstract

Historical and long-term environmental datasets are imperative to understanding how natural systems respond to our changing world. Although immensely valuable, these data are at risk of being lost unless actively curated and archived in data repositories. The practice of data rescue, which we define as identifying, preserving, and sharing valuable data and associated metadata at risk of loss, is an important means of ensuring the long-term viability and accessibility of such datasets. Improvements in policies and best practices around data management will hopefully limit future need for data rescue; these changes, however, do not apply retroactively. While rescuing data is not new, the term lacks formal definition, is often conflated with other terms (i.e. data reuse), and lacks general recommendations. Here, we outline seven key guidelines for effective rescue of historically collected and unmanaged datasets. We discuss prioritization of datasets to rescue, forming effective data rescue teams, preparing the data and associated metadata, and archiving and sharing the rescued materials. In an era of rapid environmental change, the best policy solutions will require evidence from both contemporary and historical sources. It is, therefore, imperative that we identify and preserve valuable, at-risk environmental data before they are lost to science.

摘要

历史和长期环境数据集对于了解自然系统如何应对我们不断变化的世界至关重要。尽管这些数据非常有价值,但除非将其主动整理和归档到数据存储库中,否则它们有丢失的风险。数据抢救是指识别、保存和共享有丢失风险的有价值数据及其相关元数据,这是确保这些数据集长期生存和可访问性的重要手段。数据管理政策和最佳实践的改进有望限制未来对数据抢救的需求;然而,这些变化不适用于追溯。虽然抢救数据并不是什么新鲜事,但这个术语缺乏正式定义,经常与其他术语(例如数据重用)混淆,并且缺乏一般性建议。在这里,我们概述了有效抢救历史上收集和未管理数据集的七个关键指南。我们讨论了抢救数据集的优先级、组建有效的数据抢救团队、准备数据及其相关元数据,以及归档和共享抢救材料。在环境快速变化的时代,最佳政策解决方案将需要来自当代和历史来源的证据。因此,在这些有价值的环境数据丢失之前,我们必须识别并保存它们,以免它们脱离科学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11a3/9297007/3e5f5cdfa370/rspb20220938f03.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验