Suppr超能文献

基于PERMAN算法的区间值直觉模糊有向图-矩阵方法用于衡量COVID-19对易腐食品供应链的影响

Interval-valued intuitionistic fuzzy digraph-matrix approach with PERMAN algorithm for measuring COVID-19 impact on perishable food supply chain.

作者信息

Sharma Hritika, Shanker Saket, Barve Akhilesh, Muduli Kamalakanta, Kumar Anil, Luthra Sunil

机构信息

Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, India.

Department of Mechanical Engineering, Papua New Guinea University of Technology, Lae, Papua New Guinea.

出版信息

Environ Dev Sustain. 2022 Jul 14:1-40. doi: 10.1007/s10668-022-02487-0.

Abstract

The outbreak of COVID-19 has prompted a substantial shrinkage in various businesses worldwide, the perishable food sector being one of the worst hits. Henceforth, this manuscript intends to analyse the impact of COVID-19 on perishable food supply chains (PFSCs) of developed and developing countries. For this, the study presents the analysis in two steps. In the first step, the study illuminates the particular factors that frame unique sorts of supply chain (SC) disturbances in PFSC. Secondly, the study proposes a unique interval-valued intuitionistic fuzzy set (IVIFS)-based graph theory and matrix approach (GTMA) to analyse the COVID-19 impact index value. In addition to this, the PERMAN algorithm is used to calculate the permanent function. The study has revealed that developing nations should focus more on their technological and infrastructural factors to improve the condition of PFSC during the pandemic. This study's results can be deployed by decision-makers to forestall the operative and long-haul consequences of COVID-19, or any other disruptions to the PFSC, and make plans to overcome the impact. The significance of this manuscript is that the prominent factors degrading the performance of PFSC amidst the pandemic have been highlighted, with their respective impact on developed and developing nations compared. Moreover, a neoteric comprehensive integration of IVIFS-GTMA technique along with the PERMAN algorithm has been utilised in this manuscript. This particular study is inimitable as it supplements existing literature by providing analytical support to the relationship among various factors impacting the PFSC amidst the pandemic.

摘要

新冠疫情的爆发促使全球各行各业大幅萎缩,易腐食品行业受影响尤为严重。此后,本论文旨在分析新冠疫情对发达国家和发展中国家易腐食品供应链(PFSC)的影响。为此,该研究分两步进行分析。第一步,该研究阐明了在易腐食品供应链中构成独特类型供应链(SC)干扰的特定因素。其次,该研究提出了一种基于区间值直觉模糊集(IVIFS)的图论与矩阵方法(GTMA)来分析新冠疫情影响指数值。除此之外,使用PERMAN算法来计算永久函数。研究表明,发展中国家应更加关注其技术和基础设施因素,以改善疫情期间易腐食品供应链的状况。决策者可运用本研究的结果来预防新冠疫情或易腐食品供应链的任何其他干扰所带来的运营和长期后果,并制定应对影响的计划。本论文的意义在于,突出了疫情期间导致易腐食品供应链绩效下降的显著因素,并比较了它们对发达国家和发展中国家的各自影响。此外,本论文还运用了区间值直觉模糊集-图论与矩阵方法(IVIFS-GTMA)技术与PERMAN算法的新型综合集成。这项特别的研究独一无二,因为它通过为疫情期间影响易腐食品供应链的各种因素之间的关系提供分析支持,补充了现有文献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8cf/9281283/ced604118170/10668_2022_2487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验