Ottl Sandra, Amiriparian Shahin, Gerczuk Maurice, Schuller Björn W
Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany.
GLAM - Group on Language, Audio, and Music, Imperial College London, UK.
iScience. 2022 Jun 20;25(8):104644. doi: 10.1016/j.isci.2022.104644. eCollection 2022 Aug 19.
In this article, human semen samples from the Visem dataset are automatically assessed with machine learning methods for their quality with respect to sperm motility. Several regression models are trained to automatically predict the percentage (0-100) of progressive, non-progressive, and immotile spermatozoa. The videos are adopted for unsupervised tracking and two different feature extraction methods-in particular custom movement statistics and displacement features. We train multiple neural networks and support vector regression models on the extracted features. Best results are achieved using a linear Support Vector Regressor with an aggregated and quantized representation of individual displacement features of each sperm cell. Compared to the best submission of the Medico Multimedia for Medicine challenge, which used the same dataset and splits, the mean absolute error (MAE) could be reduced from 8.83 to 7.31. We provide the source code for our experiments on GitHub (Code available at: https://github.com/EIHW/motilitAI).
在本文中,使用机器学习方法对来自Visem数据集的人类精液样本的精子活力质量进行了自动评估。训练了几个回归模型来自动预测前进性、非前进性和不动精子的百分比(0 - 100)。这些视频用于无监督跟踪以及两种不同的特征提取方法——特别是自定义运动统计和位移特征。我们在提取的特征上训练多个神经网络和支持向量回归模型。使用线性支持向量回归器并对每个精子细胞的个体位移特征进行聚合和量化表示可获得最佳结果。与医学多媒体医学挑战赛中使用相同数据集和分割的最佳提交结果相比,平均绝对误差(MAE)可从8.83降至7.31。我们在GitHub上提供了实验的源代码(代码可在:https://github.com/EIHW/motilitAI获取)。