Simula Metropolitan Center for Digital Engineering, Oslo, Norway.
Oslo Metropolitan University, Oslo, Norway.
Sci Data. 2023 May 9;10(1):260. doi: 10.1038/s41597-023-02173-4.
A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires extensive training. Therefore, computer-aided sperm analysis (CASA) has become increasingly used in clinics. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability in the assessment of sperm motility and kinematics. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30 seconds (comprising 29,196 frames) of wet semen preparations with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data via methods such as self- or unsupervised learning. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning (DL) model trained on the VISEM-Tracking dataset. As a result, we show that the dataset can be used to train complex DL models to analyze spermatozoa.
手动评估精子活力需要显微镜观察,由于视野中精子的快速运动,这具有挑战性。为了获得正确的结果,手动评估需要广泛的培训。因此,计算机辅助精子分析 (CASA) 在临床中越来越多地被使用。尽管如此,为了提高精子活力和运动学评估的准确性和可靠性,仍然需要更多的数据来训练有监督的机器学习方法。在这方面,我们提供了一个名为 VISEM-Tracking 的数据集,其中包含 20 个 30 秒的湿精液制备视频记录(包含 29196 帧),具有手动注释的边界框坐标和一组由该领域的专家分析的精子特征。除了注释数据,我们还提供未标记的视频剪辑,以便通过自我或无监督学习等方法轻松访问和分析数据。作为本文的一部分,我们使用在 VISEM-Tracking 数据集上训练的 YOLOv5 深度学习 (DL) 模型展示了精子检测的基准性能。结果表明,该数据集可用于训练复杂的 DL 模型来分析精子。
Sci Data. 2023-5-9
Genes (Basel). 2023-2-9
Sensors (Basel). 2020-12-24
Theriogenology. 2010-5-8
Comput Methods Programs Biomed. 2021-3
Theriogenology. 2014-1-1
Andrology. 2021-7
Sci Data. 2025-5-18
Reprod Fertil. 2025-5-2
Sichuan Da Xue Xue Bao Yi Xue Ban. 2024-9-20
Sensors (Basel). 2024-5-28
Biol Reprod. 2024-6-12
J Assist Reprod Genet. 2023-2
Hum Reprod. 2021-8-18
Nat Rev Urol. 2021-7
Commun Biol. 2019-7-3
Comput Biol Med. 2019-4-26
Comput Biol Med. 2017-10-10
Comput Biol Med. 2017-4-1