文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

VISEM-Tracking,一个人类精子追踪数据集。

VISEM-Tracking, a human spermatozoa tracking dataset.

机构信息

Simula Metropolitan Center for Digital Engineering, Oslo, Norway.

Oslo Metropolitan University, Oslo, Norway.

出版信息

Sci Data. 2023 May 9;10(1):260. doi: 10.1038/s41597-023-02173-4.


DOI:10.1038/s41597-023-02173-4
PMID:37156762
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10167330/
Abstract

A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires extensive training. Therefore, computer-aided sperm analysis (CASA) has become increasingly used in clinics. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability in the assessment of sperm motility and kinematics. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30 seconds (comprising 29,196 frames) of wet semen preparations with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data via methods such as self- or unsupervised learning. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning (DL) model trained on the VISEM-Tracking dataset. As a result, we show that the dataset can be used to train complex DL models to analyze spermatozoa.

摘要

手动评估精子活力需要显微镜观察,由于视野中精子的快速运动,这具有挑战性。为了获得正确的结果,手动评估需要广泛的培训。因此,计算机辅助精子分析 (CASA) 在临床中越来越多地被使用。尽管如此,为了提高精子活力和运动学评估的准确性和可靠性,仍然需要更多的数据来训练有监督的机器学习方法。在这方面,我们提供了一个名为 VISEM-Tracking 的数据集,其中包含 20 个 30 秒的湿精液制备视频记录(包含 29196 帧),具有手动注释的边界框坐标和一组由该领域的专家分析的精子特征。除了注释数据,我们还提供未标记的视频剪辑,以便通过自我或无监督学习等方法轻松访问和分析数据。作为本文的一部分,我们使用在 VISEM-Tracking 数据集上训练的 YOLOv5 深度学习 (DL) 模型展示了精子检测的基准性能。结果表明,该数据集可用于训练复杂的 DL 模型来分析精子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/fd1c5a32b9bb/41597_2023_2173_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/f01c437495dd/41597_2023_2173_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/c9027cf9a5b2/41597_2023_2173_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/0038e2143f50/41597_2023_2173_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/a46a62917f45/41597_2023_2173_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/fd1c5a32b9bb/41597_2023_2173_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/f01c437495dd/41597_2023_2173_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/c9027cf9a5b2/41597_2023_2173_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/0038e2143f50/41597_2023_2173_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/a46a62917f45/41597_2023_2173_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9065/10167330/fd1c5a32b9bb/41597_2023_2173_Fig5_HTML.jpg

相似文献

[1]
VISEM-Tracking, a human spermatozoa tracking dataset.

Sci Data. 2023-5-9

[2]
Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset.

Genes (Basel). 2023-2-9

[3]
Improved sperm kinematics in semen samples collected after 2 h versus 4-7 days of ejaculation abstinence.

Hum Reprod. 2017-7-1

[4]
Machine Learning-Based Analysis of Sperm Videos and Participant Data for Male Fertility Prediction.

Sci Rep. 2019-11-14

[5]
Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination.

Sensors (Basel). 2020-12-24

[6]
Sperm motility assessed by deep convolutional neural networks into WHO categories.

Sci Rep. 2023-9-7

[7]
Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa.

Theriogenology. 2010-5-8

[8]
Faster region convolutional neural network and semen tracking algorithm for sperm analysis.

Comput Methods Programs Biomed. 2021-3

[9]
Computer-assisted sperm analysis (CASA): capabilities and potential developments.

Theriogenology. 2014-1-1

[10]
Automated motility and morphology measurement of live spermatozoa.

Andrology. 2021-7

引用本文的文献

[1]
Improving Cell Detection and Tracking in Microscopy Images Using YOLO and an Enhanced DeepSORT Algorithm.

Sensors (Basel). 2025-7-12

[2]
Deep Learning Models for Multi-Part Morphological Segmentation and Evaluation of Live Unstained Human Sperm.

Sensors (Basel). 2025-5-14

[3]
3D+t Multifocal Imaging Dataset of Human Sperm.

Sci Data. 2025-5-18

[4]
Artificial intelligence model for the assessment of unstained live sperm morphology.

Reprod Fertil. 2025-5-2

[5]
Extender development for optimal cryopreservation of buck sperm to increase reproductive efficiency of goats.

Front Vet Sci. 2025-4-2

[6]
[Application of Artificial Intelligence in Sperm Quality Analysis and Sperm Screening].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2024-9-20

[7]
Sperm YOLOv8E-TrackEVD: A Novel Approach for Sperm Detection and Tracking.

Sensors (Basel). 2024-5-28

[8]
Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†.

Biol Reprod. 2024-6-12

本文引用的文献

[1]
Looking with new eyes: advanced microscopy and artificial intelligence in reproductive medicine.

J Assist Reprod Genet. 2023-2

[2]
Artificial intelligence in the fertility clinic: status, pitfalls and possibilities.

Hum Reprod. 2021-8-18

[3]
Machine learning for sperm selection.

Nat Rev Urol. 2021-7

[4]
A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods.

Med Biol Eng Comput. 2020-5

[5]
Machine Learning-Based Analysis of Sperm Videos and Participant Data for Male Fertility Prediction.

Sci Rep. 2019-11-14

[6]
Deep learning-based selection of human sperm with high DNA integrity.

Commun Biol. 2019-7-3

[7]
A novel deep learning method for automatic assessment of human sperm images.

Comput Biol Med. 2019-4-26

[8]
A dictionary learning approach for human sperm heads classification.

Comput Biol Med. 2017-10-10

[9]
Gold-standard for computer-assisted morphological sperm analysis.

Comput Biol Med. 2017-4-1

[10]
Fatty acid composition of spermatozoa is associated with BMI and with semen quality.

Andrology. 2016-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索