Suppr超能文献

一种使用机器学习对真实世界数据进行风险分层的新分析框架:小细胞肺癌研究。

A novel analytical framework for risk stratification of real-world data using machine learning: A small cell lung cancer study.

机构信息

Division of Health Informatics and Logistics, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Huddinge, Sweden.

Department of Oncology-Pathology, Karolinska Institutet and the Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden.

出版信息

Clin Transl Sci. 2022 Oct;15(10):2437-2447. doi: 10.1111/cts.13371. Epub 2022 Jul 29.

Abstract

In recent studies, small cell lung cancer (SCLC) treatment guidelines based on Veterans' Administration Lung Study Group limited/extensive disease staging and resulted in broad and inseparable prognostic subgroups. Evidence suggests that the eight versions of tumor, node, and metastasis (TNM) staging can play an important role to address this issue. The aim of the present study was to improve the detection of prognostic subgroups from a real-word data (RWD) cohort of patients and analyze their patterns using a development pipeline with thoracic oncologists and machine learning methods. The method detected subgroups of patients informing unsupervised learning (partition around medoids) including the impact of covariates on prognosis (Cox regression and random survival forest). An analysis was carried out using patients with SCLC (n = 636) with stage IIIA-IVB according to TNM classification. The analysis yielded k = 7 compacted and well-separated clusters of patients. Performance status (Eastern Cooperative Oncology Group-Performance Status), lactate dehydrogenase, spreading of metastasis, cancer stage, and CRP were the baselines that characterized the subgroups. The selected clustering method outperformed standard clustering techniques, which were not capable of detecting meaningful subgroups. From the analysis of cluster treatment decisions, we showed the potential of future RWD applications to understand disease, develop individualized therapies, and improve healthcare decision making.

摘要

在最近的研究中,基于退伍军人管理局肺部研究小组的小细胞肺癌 (SCLC) 治疗指南对局限性/广泛性疾病分期进行了限制,从而导致预后分组广泛且不可分割。有证据表明,肿瘤、淋巴结和转移 (TNM) 分期的八个版本可以在解决这个问题方面发挥重要作用。本研究的目的是使用胸科肿瘤学家和机器学习方法的开发管道从真实世界数据 (RWD) 队列中患者的数据中提高预后分组的检测,并分析其模式。该方法通过无监督学习(中位数分区)检测患者分组,包括协变量对预后的影响(Cox 回归和随机生存森林)。对根据 TNM 分类的 IIIA-IVB 期 SCLC 患者 (n = 636) 进行了分析。分析产生了 k = 7 个紧凑且分离良好的患者聚类。表现状态(东部合作肿瘤学组表现状态)、乳酸脱氢酶、转移扩散、癌症分期和 CRP 是描述亚组的基线。所选聚类方法优于无法检测到有意义的亚组的标准聚类技术。从对聚类治疗决策的分析中,我们展示了未来 RWD 应用在理解疾病、制定个体化治疗方案和改善医疗保健决策方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/781e/9579402/5efd59ff8378/CTS-15-2437-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验