Suppr超能文献

将机器学习与药代动力学模型相结合:科学机器学习在为现有 PK 模型添加神经网络组件方面的优势。

Integrating machine learning with pharmacokinetic models: Benefits of scientific machine learning in adding neural networks components to existing PK models.

机构信息

Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.

Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2024 Jan;13(1):41-53. doi: 10.1002/psp4.13054. Epub 2023 Oct 16.

Abstract

Recently, the use of machine-learning (ML) models for pharmacokinetic (PK) modeling has grown significantly. Although most of the current approaches use ML techniques as black boxes, there are only a few that have proposed interpretable architectures which integrate mechanistic knowledge. In this work, we use as the test case a one-compartment PK model using a scientific machine learning (SciML) framework and consider learning an unknown absorption using neural networks, while simultaneously estimating other parameters of drug distribution and elimination. We generate simulated data with different sampling strategies to show that our model can accurately predict concentrations in extrapolation tasks, including new dosing regimens with different sparsity levels, and produce reliable forecasts even for new patients. By using a scenario of fitting PK data with complex absorption, we demonstrate that including known physiological structure into an SciML model allows us to obtain highly accurate predictions while preserving the interpretability of classical compartmental models.

摘要

最近,机器学习 (ML) 模型在药代动力学 (PK) 建模中的应用显著增加。虽然目前大多数方法都将 ML 技术作为黑盒使用,但只有少数方法提出了将机制知识集成的可解释架构。在这项工作中,我们使用一个使用科学机器学习 (SciML) 框架的单室 PK 模型作为测试案例,考虑使用神经网络学习未知的吸收,同时估计药物分布和消除的其他参数。我们使用不同的采样策略生成模拟数据,以表明我们的模型可以在外推任务中准确预测浓度,包括具有不同稀疏度的新给药方案,并且即使对于新患者也能产生可靠的预测。通过使用具有复杂吸收的 PK 数据拟合场景,我们证明将已知生理结构纳入 SciML 模型可以使我们在保留经典隔室模型的可解释性的同时,获得高度准确的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ea/10787197/0a9c35a24ef9/PSP4-13-41-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验