Suppr超能文献

计算模拟表明,Abl 活性控制着生长锥中肌动蛋白网络的内聚性。

Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones.

机构信息

Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.

National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892.

出版信息

Mol Biol Cell. 2022 Sep 15;33(11):ar92. doi: 10.1091/mbc.E21-11-0535. Epub 2022 Jul 20.

Abstract

Extensive studies of growing axons have revealed many individual components and protein interactions that guide neuronal morphogenesis. Despite this, however, we lack any clear picture of the emergent mechanism by which this nanometer-scale biochemistry generates the multimicron-scale morphology and cell biology of axon growth and guidance in vivo. To address this, we studied the downstream effects of the Abl signaling pathway using a computer simulation software (MEDYAN) that accounts for mechanochemical dynamics of active polymers. Previous studies implicate two Abl effectors, Arp2/3 and Enabled, in Abl-dependent axon guidance decisions. We now find that Abl alters actin architecture primarily by activating Arp2/3, while Enabled plays a more limited role. Our simulations show that simulations mimicking modest levels of Abl activity bear striking similarity to actin profiles obtained experimentally from live imaging of actin in wild-type axons in vivo. Using a graph theoretical filament-filament contact analysis, moreover, we find that networks mimicking hyperactivity of Abl (enhanced Arp2/3) are fragmented into smaller domains of actin that interact weakly with each other, consistent with the pattern of actin fragmentation observed upon Abl overexpression in vivo. Two perturbative simulations further confirm that high-Arp2/3 actin networks are mechanically disconnected and fail to mount a cohesive response to perturbation. Taken together, these data provide a molecular-level picture of how the large-scale organization of the axonal cytoskeleton arises from the biophysics of actin networks.

摘要

对生长轴突的广泛研究揭示了许多指导神经元形态发生的单个成分和蛋白质相互作用。然而,尽管如此,我们仍然缺乏任何清晰的画面,说明这种纳米级生物化学如何产生体内轴突生长和导向的多微米级形态和细胞生物学。为了解决这个问题,我们使用一种考虑活性聚合物机械化学动力学的计算机模拟软件(MEDYAN)研究了 Abl 信号通路的下游效应。以前的研究表明,两个 Abl 效应物,Arp2/3 和 Enabled,参与了 Abl 依赖性轴突导向决策。我们现在发现,Abl 主要通过激活 Arp2/3 来改变肌动蛋白结构,而 Enabled 则发挥更有限的作用。我们的模拟表明,模拟适度水平的 Abl 活性与从体内活细胞成像实验中获得的野生型轴突中的肌动蛋白轮廓惊人地相似。此外,使用图论细丝-细丝接触分析,我们发现模拟 Abl 过度活跃(增强的 Arp2/3)的网络被分割成彼此弱相互作用的较小肌动蛋白域,与体内 Abl 过表达观察到的肌动蛋白碎片化模式一致。另外两个微扰模拟进一步证实,高 Arp2/3 肌动蛋白网络是机械上不连通的,并且无法对微扰做出一致的响应。总之,这些数据提供了一个分子水平的画面,说明轴突细胞骨架的大尺度组织如何从肌动蛋白网络的生物物理学中产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee08/9582807/83fcffcbddaf/mbc-33-ar92-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验