Laboratoire de Physique, CNRS UMR 5672, Université Claude Bernard, Ecole Normale Supérieure de Lyon, Université de Lyon, F-69342 Lyon, France.
LUMICKS, 1059 CH Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2202527119. doi: 10.1073/pnas.2202527119. Epub 2022 Jul 18.
Despite an extensive theoretical and numerical background, the translocation ratchet mechanism, which is fundamental for the transmembrane transport of biomolecules, has never been experimentally reproduced at the nanoscale. Only the Sec61 and bacterial type IV pilus pores were experimentally shown to exhibit a translocation ratchet mechanism. Here we designed a synthetic translocation ratchet and quantified its efficiency as a nanopump. We measured the translocation frequency of DNA molecules through nanoporous membranes and showed that polycations at the side accelerated the translocation in a ratchet-like fashion. We investigated the ratchet efficiency according to geometrical and kinetic parameters and observed the ratchet to be only dependent on the size of the DNA molecule with a power law [Formula: see text]. A threshold length of 3 kbp was observed, below which the ratchet did not operate. We interpreted this threshold in a DNA looping model, which quantitatively explained our results.
尽管有广泛的理论和数值背景,但生物分子跨膜运输的基本机制——转运棘轮机制,从未在纳米尺度上得到实验再现。只有 Sec61 和细菌 IV 型菌毛孔被实验证明具有转运棘轮机制。在这里,我们设计了一种合成的转运棘轮,并将其作为纳米泵的效率进行了量化。我们测量了 DNA 分子通过纳米多孔膜的转运频率,并表明带正电荷的物质在一侧以棘轮式的方式加速了转运。我们根据几何和动力学参数研究了棘轮效率,并观察到棘轮仅取决于 DNA 分子的大小,呈幂律关系 [公式:见正文]。观察到一个 3 kbp 的阈值长度,低于该长度,棘轮就不会起作用。我们在 DNA 环化模型中解释了这个阈值,该模型定量地解释了我们的结果。