Depperschmidt A, Ketterer N, Pfaffelhuber P
University of Freiburg, Freiburg, Germany.
J Math Biol. 2013 Feb;66(3):505-34. doi: 10.1007/s00285-012-0519-8. Epub 2012 Feb 22.
We study a model for the translocation of proteins across membranes through a nanopore using a ratcheting mechanism. When the protein enters the nanopore it diffuses in and out of the pore according to a Brownian motion. Moreover, it is bound by ratcheting molecules which hinder the diffusion of the protein out of the nanopore, i.e. the Brownian motion is reflected such that no ratcheting molecule exits the pore. New ratcheting molecules bind at rate γ. Extending our previous approach (Depperschmidt and Pfaffelhuber in Stoch Processes Appl 120:901-925, 2010) we allow the ratcheting molecules to dissociate (at rate δ) from the protein (Model I). We also provide an approximate model (Model II) which assumes a Poisson equilibrium of ratcheting molecules on one side of the current reflection boundary. Using analytical methods and simulations we show that the speeds of both models are approximately the same. Our analytical results on Model II give the speed of translocation by means of a solution of an ordinary differential equation. This speed gives an approximation for the time it takes to translocate a protein of given length.
我们研究了一种利用棘轮机制使蛋白质跨膜转运通过纳米孔的模型。当蛋白质进入纳米孔时,它会根据布朗运动在孔内扩散进出。此外,它会被棘轮分子束缚,这些分子会阻碍蛋白质从纳米孔中扩散出去,即布朗运动发生反射,使得没有棘轮分子离开孔。新的棘轮分子以速率γ结合。扩展我们之前的方法(德佩施密特和普法费尔胡伯,《随机过程及其应用》120:901 - 925,2010),我们允许棘轮分子(以速率δ)从蛋白质上解离(模型I)。我们还提供了一个近似模型(模型II),该模型假设在当前反射边界一侧的棘轮分子处于泊松平衡。通过解析方法和模拟,我们表明两个模型的速度大致相同。我们对模型II的解析结果通过一个常微分方程的解给出了转运速度。这个速度给出了转运给定长度蛋白质所需时间的近似值。