Xing Zhou, An Ming-Wei, Chen Zuo-Chang, Hu Mingyu, Huang Xianzhen, Deng Lin-Long, Zhang Qianyan, Guo Xugang, Xie Su-Yuan, Yang Shihe
Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China.
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
J Am Chem Soc. 2022 Aug 3;144(30):13839-13850. doi: 10.1021/jacs.2c05235. Epub 2022 Jul 21.
Despite their multifaceted advantages, inverted perovskite solar cells (PSCs) still suffer from lower power conversion efficiencies (PCEs) than their regular counterparts, which is largely due to recombination energy losses () that arise from the chemical, physical, and energy level mismatches, especially at the interfaces between perovskites and fullerene electron transport layers (ETLs). To address this problem, we herein introduce an aminium iodide derivative of a buckybowl (aminocorannulene) that is molecularly layered at the perovskite-ETL interface. Strikingly, besides passivating the PbI-rich perovskite surface, the aminocorannulene enforces a vertical dipole and enhances the surface n-type character that is more compatible with the ETL, thus boosting the electron extraction and transport dynamics and suppressing interfacial . As a result, the champion PSC achieves an excellent PCE of over 22%, which is superior compared to that of the control device (∼20%). Furthermore, the device stability is significantly enhanced, owing to a lock-and-key-like grip on the mobile iodides by the buckybowls and the resultant increase of the interfacial ion-migration barrier. This work highlights the potential of buckybowls for the multifunctional surface engineering of perovskite toward high-performance and stable PSCs.
尽管具有多方面的优势,但倒置钙钛矿太阳能电池(PSC)的功率转换效率(PCE)仍低于其常规对应物,这主要归因于化学、物理和能级不匹配导致的复合能量损失(),尤其是在钙钛矿与富勒烯电子传输层(ETL)之间的界面处。为了解决这个问题,我们在此引入一种巴基碗(氨基环蕃)的碘化铵衍生物,它在钙钛矿 - ETL界面形成分子层。令人惊讶的是,除了钝化富含PbI的钙钛矿表面外,氨基环蕃还能形成垂直偶极并增强与ETL更兼容的表面n型特性,从而促进电子提取和传输动力学并抑制界面处的。结果,最佳的PSC实现了超过22%的优异PCE,与对照器件(约20%)相比更优。此外,由于巴基碗对移动碘化物的类似锁钥的夹持作用以及由此导致的界面离子迁移势垒增加,器件稳定性得到显著增强。这项工作突出了巴基碗在钙钛矿多功能表面工程以实现高性能和稳定PSC方面的潜力。