Suppr超能文献

利用热厌氧菌 Thermoanaerobacterium aotearoense SCUT27 的 I-B 型 CRISPR 基因组编辑系统,并对该菌株进行工程改造以提高乙醇产量。

Exploiting the Type I-B CRISPR Genome Editing System in Thermoanaerobacterium aotearoense SCUT27 and Engineering the Strain for Enhanced Ethanol Production.

机构信息

School of Biology and Biological Engineering, South China University of Technologygrid.79703.3a, Guangzhou, China.

Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technologygrid.79703.3a, Guangzhou, China.

出版信息

Appl Environ Microbiol. 2022 Aug 9;88(15):e0075122. doi: 10.1128/aem.00751-22. Epub 2022 Jul 12.

Abstract

Thermoanaerobacterium aotearoense strain SCUT27 is a potential industrial biofuel-producing strain because of its broad substrate spectrum, especially the ability to co-use glucose and xylose. The bottleneck hindering the development of strain SCUT27 is the lack of selective markers for polygene manipulation in this thermophilic bacterium. In this study, the endogenous type I-B clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system was developed for multiplex genome editing of strain SCUT27. The protospacer-adjacent motif was identified by analysis and verified with orotidine-5'-phosphate decarboxylase () or lactate dehydrogenase () as the editing target. The type I-B CRISPR/Cas system was functional in strain SCUT27 with 58.3% to 100% editing efficiency. A multiplex genome editing method based on thymidine kinase () as a negative selection marker was developed, and strain SCUT27/Δ/Δ/Δ, in which and the arginine repressor () were knocked out successively, was successfully obtained. Strain SCUT27/Δ/Δ/Δ exhibited prominent advantages over wild-type SCUT27 in ethanol production, with significantly improved ability to metabolize xylose. Thermophilic microbes have attracted great attention as potential candidates for production of biofuels and chemicals from lignocellulose because of their thermal tolerance and wide substrate spectra. The ability to edit multiple genes using the native type I-B CRISPR/Cas system would speed up engineering of Thermoanaerobacterium aotearoense strain SCUT27 for higher ethanol production from lignocellulosic hydrolysates. Here, we produced a mutant strain, T. aotearoense SCUT27/Δ/Δ/Δ, using the native CRISPR/Cas system. The engineered strain showed satisfactory performance with improved ethanol productivity from various lignocellulosic hydrolysates. Our data lay the foundations for development of this thermophilic microbe into an excellent ethanol producer using lignocellulosic hydrolysates. The methods described here may also provide a reference to develop multigene editing methods for other microorganisms.

摘要

热厌氧菌属菌株 SCUT27 是一种有潜力的工业生物燃料生产菌株,因为它具有广泛的底物谱,特别是能够共利用葡萄糖和木糖。限制该菌株发展的瓶颈是缺乏用于该嗜热菌多基因操作的选择性标记。在本研究中,开发了内源性 I-B 型簇状规则间隔短回文重复序列(CRISPR)/CRISPR 相关(Cas)系统,用于 SCUT27 菌株的多重基因组编辑。通过分析确定了原间隔邻近基序,并通过尿嘧啶 5'-磷酸脱羧酶()或乳酸脱氢酶()作为编辑靶标进行了验证。I-B 型 CRISPR/Cas 系统在 SCUT27 中具有 58.3%至 100%的编辑效率。开发了基于胸苷激酶()作为负选择标记的多重基因组编辑方法,并成功获得了依次敲除和精氨酸阻遏物()的 SCUT27/Δ/Δ/Δ 菌株。与野生型 SCUT27 相比,SCUT27/Δ/Δ/Δ 菌株在乙醇生产方面表现出明显优势,显著提高了代谢木糖的能力。 由于其耐热性和广泛的底物谱,嗜热微生物作为木质纤维素生产生物燃料和化学品的潜在候选物引起了极大关注。使用天然 I-B CRISPR/Cas 系统编辑多个基因的能力将加速 Thermoanaerobacterium aotearoense 菌株 SCUT27 的工程改造,以提高木质纤维素水解物的乙醇产量。在这里,我们使用天然 CRISPR/Cas 系统生产了突变株 T. aotearoense SCUT27/Δ/Δ/Δ。该工程菌株在利用各种木质纤维素水解物生产乙醇方面表现出令人满意的性能,提高了乙醇生产率。我们的数据为将这种嗜热微生物开发成利用木质纤维素水解物生产乙醇的优秀生产菌奠定了基础。这里描述的方法也可为其他微生物的多基因编辑方法提供参考。

相似文献

2
Engineering Thermoanaerobacterium aotearoense SCUT27 with argR knockout for enhanced ethanol production from lignocellulosic hydrolysates.
Bioresour Technol. 2020 Aug;310:123435. doi: 10.1016/j.biortech.2020.123435. Epub 2020 Apr 23.
3
The redox-sensing transcriptional repressor Rex is important for regulating the products distribution in Thermoanaerobacterium aotearoense SCUT27.
Appl Microbiol Biotechnol. 2020 Jun;104(12):5605-5617. doi: 10.1007/s00253-020-10554-7. Epub 2020 Apr 4.
4
Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses.
Biotechnol Biofuels Bioprod. 2023 Oct 21;16(1):155. doi: 10.1186/s13068-023-02402-3.
6
Engineered with knockout for improved hydrogen production from lignocellulose hydrolysates.
Biotechnol Biofuels. 2019 Sep 10;12:214. doi: 10.1186/s13068-019-1559-8. eCollection 2019.
7
Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense.
Enzyme Microb Technol. 2011 Feb 8;48(2):155-61. doi: 10.1016/j.enzmictec.2010.10.006. Epub 2010 Oct 30.
10
High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain.
Bioresour Technol. 2010 Nov;101(22):8718-24. doi: 10.1016/j.biortech.2010.06.111. Epub 2010 Jul 15.

引用本文的文献

1
Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System.
Int J Mol Sci. 2024 Nov 22;25(23):12544. doi: 10.3390/ijms252312544.
2
Type I CRISPR-Cas-mediated microbial gene editing and regulation.
AIMS Microbiol. 2023 Dec 18;9(4):780-800. doi: 10.3934/microbiol.2023040. eCollection 2023.
3
Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses.
Biotechnol Biofuels Bioprod. 2023 Oct 21;16(1):155. doi: 10.1186/s13068-023-02402-3.
4
Metabolic engineering of Thermoanaerobacterium AK17 for increased ethanol production in seaweed hydrolysate.
Biotechnol Biofuels Bioprod. 2023 Sep 11;16(1):135. doi: 10.1186/s13068-023-02388-y.
5
A fluorescent reporter system for anaerobic thermophiles.
Front Bioeng Biotechnol. 2023 Jul 5;11:1226889. doi: 10.3389/fbioe.2023.1226889. eCollection 2023.

本文引用的文献

1
2
Identifying promoters for gene expression in .
Metab Eng Commun. 2015 Mar 30;2:23-29. doi: 10.1016/j.meteno.2015.03.002. eCollection 2015 Dec.
3
Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems.
Science. 2021 Apr 30;372(6541). doi: 10.1126/science.abe5601.
4
Exploiting heterologous and endogenous CRISPR-Cas systems for genome editing in the probiotic Clostridium butyricum.
Biotechnol Bioeng. 2021 Jul;118(7):2448-2459. doi: 10.1002/bit.27753. Epub 2021 Apr 14.
5
Engineering Thermoanaerobacterium aotearoense SCUT27 with argR knockout for enhanced ethanol production from lignocellulosic hydrolysates.
Bioresour Technol. 2020 Aug;310:123435. doi: 10.1016/j.biortech.2020.123435. Epub 2020 Apr 23.
6
The redox-sensing transcriptional repressor Rex is important for regulating the products distribution in Thermoanaerobacterium aotearoense SCUT27.
Appl Microbiol Biotechnol. 2020 Jun;104(12):5605-5617. doi: 10.1007/s00253-020-10554-7. Epub 2020 Apr 4.
7
Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium .
Metab Eng Commun. 2019 Nov 28;10:e00116. doi: 10.1016/j.mec.2019.e00116. eCollection 2020 Jun.
8
Lignocellulosic biomass: Hurdles and challenges in its valorization.
Appl Microbiol Biotechnol. 2019 Dec;103(23-24):9305-9320. doi: 10.1007/s00253-019-10212-7. Epub 2019 Nov 9.
9
Using an Endogenous CRISPR-Cas System for Genome Editing in the Human Pathogen Clostridium difficile.
Appl Environ Microbiol. 2019 Oct 1;85(20). doi: 10.1128/AEM.01416-19. Print 2019 Oct 15.
10
Developing Riboswitch-Mediated Gene Regulatory Controls in Thermophilic Bacteria.
ACS Synth Biol. 2019 Apr 19;8(4):633-640. doi: 10.1021/acssynbio.8b00487. Epub 2019 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验