Walker Julie E, Lanahan Anthony A, Zheng Tianyong, Toruno Camilo, Lynd Lee R, Cameron Jeffrey C, Olson Daniel G, Eckert Carrie A
Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA.
Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
Metab Eng Commun. 2019 Nov 28;10:e00116. doi: 10.1016/j.mec.2019.e00116. eCollection 2020 Jun.
The robust lignocellulose-solubilizing activity of makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer , we characterized a native Type I-B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I-B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from , is active in . We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into . For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that / homologs, isolated from , are functional in . For the Type I-B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%. By combining the thermophilic CRISPR system (either Type I-B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer for both increased lignocellulose degradation and biofuel production.
其强大的木质纤维素溶解活性使其成为生物燃料生产中联合生物加工的首选。[具体生物名称]的遗传技术落后于模式生物,因此限制了提高生物燃料产量的尝试。为了提高我们对[具体生物名称]进行工程改造的能力,我们对一种天然的I-B型和一种异源的II型成簇规律间隔短回文重复序列(CRISPR)/cas(CRISPR相关)系统进行了表征。我们将天然的I-B型系统重新用于基因组编辑。我们测试了三种嗜热Cas9变体(II型),发现从[具体来源]分离出的GeoCas9在[具体生物名称]中具有活性。我们利用CRISPR介导的同源定向修复在[具体基因名称]中引入了一个无义突变。对于这两种编辑系统,修复模板与基因组之间的同源重组似乎是限制步骤。为了克服这一限制,我们测试了三种新型嗜热重组酶,并证明从[具体来源]分离出的[具体重组酶名称]同源物在[具体生物名称]中具有功能。对于I-B型系统,一种名为LL1586的工程菌株在[具体位点]产生了40%的基因组编辑效率,当表达重组工程机制时,这一效率提高到了71%。对于II型GeoCas9系统,观察到的基因组编辑效率为12.5%,当表达重组工程机制时,这一效率提高到了94%。通过将嗜热CRISPR系统(I-B型或II型)与重组酶相结合,我们开发了一种新工具,可实现高效的CRISPR编辑。我们现在准备好利用CRISPR技术更好地对[具体生物名称]进行工程改造,以提高木质纤维素降解和生物燃料产量。