Suppr超能文献

脂 A 变体以不同的方式激活人 TLR4 和非经典炎性小体,并需要核心寡糖来激活炎性小体。

Lipid A Variants Activate Human TLR4 and the Noncanonical Inflammasome Differently and Require the Core Oligosaccharide for Inflammasome Activation.

机构信息

Department of Microbiology, University of Pennsylvaniagrid.25879.31 Perelman School of Medicine, Philadelphia, Pennsylvania, USA.

Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA.

出版信息

Infect Immun. 2022 Aug 18;90(8):e0020822. doi: 10.1128/iai.00208-22. Epub 2022 Jul 14.

Abstract

Detection of Gram-negative bacterial lipid A by the extracellular sensor, myeloid differentiation 2 (MD2)/Toll-like receptor 4 (TLR4), or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically its phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all tetra-, penta-, and hexa-acylated LOS variants examined activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation. In contrast, both core oligosaccharide and lipid A were required for robust CASP4/5 inflammasome activation in human macrophages, whereas core oligosaccharide was not required to activate mouse macrophages expressing CASP4. Our findings show that human TLR4 and CASP4/5 detect both shared and nonoverlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A and would thereby be expected to constrain the ability of pathogens to evade innate immune detection.

摘要

革兰氏阴性菌脂 A 通过细胞外传感器髓样分化 2(MD2)/Toll 样受体 4(TLR4)或细胞内炎性体传感器 CASP4 和 CASP5 的检测,可引发强烈的炎症反应。脂 A 的化学结构,特别是其磷酸化和酰化状态,在不同细菌种属和同一细菌种属内都存在差异,这使得病原体能够逃避或抑制宿主免疫。目前,尚不清楚脂 A 磷酸化或酰化状态的不同改变如何影响人类 TLR4 和 CASP4/5 的激活。本研究使用一组源自鼠疫耶尔森氏菌的工程化脂寡糖(LOS),这些 LOS 具有不同酰化或磷酸化状态的特定脂 A 结构,我们发现磷酸化状态的差异并不影响 TLR4 或 CASP4/5 的激活。然而,酰化状态会影响 TLR4 和 CASP4/5 的激活。具体而言,所有被检测的四、五和六酰化 LOS 变体都激活了 CASP4/5 依赖性反应,而 TLR4 仅对五和六酰化 LOS 有反应,而对四酰化 LOS 或五酰化 LOS(在 3'位置缺少二级酰链)没有反应。正如预期的那样,脂 A 本身足以激活 TLR4。相反,在人类巨噬细胞中,脂 A 是 TLR4 强烈激活所必需的,而在表达 CASP4 的小鼠巨噬细胞中,核心寡糖和脂 A 都不是 CASP4/5 炎性体激活所必需的。本研究结果表明,人类 TLR4 和 CASP4/5 能够识别共同和非重叠的 LOS/脂 A 结构,这使先天免疫系统能够识别更广泛的细菌 LOS/脂 A,从而限制了病原体逃避先天免疫检测的能力。

相似文献

2
Position-Specific Secondary Acylation Determines Detection of Lipid A by Murine TLR4 and Caspase-11.
Infect Immun. 2022 Aug 18;90(8):e0020122. doi: 10.1128/iai.00201-22. Epub 2022 Jul 14.
3
Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.
PLoS Pathog. 2012;8(10):e1002963. doi: 10.1371/journal.ppat.1002963. Epub 2012 Oct 11.
4
Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces.
J Biol Chem. 2015 May 22;290(21):13440-53. doi: 10.1074/jbc.M115.653881. Epub 2015 Apr 2.
7
Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea.
Infect Immun. 2014 Jan;82(1):184-92. doi: 10.1128/IAI.00890-13. Epub 2013 Oct 14.
10
Influence of lipid A acylation pattern on membrane permeability and innate immune stimulation.
Mar Drugs. 2013 Aug 26;11(9):3197-208. doi: 10.3390/md11093197.

引用本文的文献

1
Identification and immunological characterization of cuproptosis-related molecular clusters in cardioembolic stroke.
Medicine (Baltimore). 2025 Aug 15;104(33):e43747. doi: 10.1097/MD.0000000000043747.
3
Gut-Microbiota-Driven Lipid Metabolism: Mechanisms and Applications in Swine Production.
Metabolites. 2025 Apr 4;15(4):248. doi: 10.3390/metabo15040248.
4
Immune profile diversity is achieved with synthetic TLR4 agonists combined with the RG1-VLP vaccine in mice.
Vaccine. 2025 Jan 12;44:126577. doi: 10.1016/j.vaccine.2024.126577. Epub 2024 Dec 3.
7
Lipid A Structural Variants Induce Altered Immune Responses.
Am J Respir Cell Mol Biol. 2024 Aug;71(2):207-218. doi: 10.1165/rcmb.2024-0059OC.
8
Strategies of bacterial detection by inflammasomes.
Cell Chem Biol. 2024 May 16;31(5):835-850. doi: 10.1016/j.chembiol.2024.03.009. Epub 2024 Apr 17.
9
LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance caspase-4 activation both in cellulo and in vitro.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2216028120. doi: 10.1073/pnas.2216028120. Epub 2023 Apr 6.
10
Gut microbiome lipid metabolism and its impact on host physiology.
Cell Host Microbe. 2023 Feb 8;31(2):173-186. doi: 10.1016/j.chom.2023.01.009.

本文引用的文献

1
Position-Specific Secondary Acylation Determines Detection of Lipid A by Murine TLR4 and Caspase-11.
Infect Immun. 2022 Aug 18;90(8):e0020122. doi: 10.1128/iai.00201-22. Epub 2022 Jul 14.
2
Remodelling of the Gram-negative bacterial Kdo-lipid A and its functional implications.
Microbiology (Reading). 2022 Apr;168(4). doi: 10.1099/mic.0.001159.
3
Deep-sea microbes as tools to refine the rules of innate immune pattern recognition.
Sci Immunol. 2021 Mar 12;6(57). doi: 10.1126/sciimmunol.abe0531.
4
Regulation, Activation and Function of Caspase-11 during Health and Disease.
Int J Mol Sci. 2021 Feb 3;22(4):1506. doi: 10.3390/ijms22041506.
5
Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways.
Front Immunol. 2020 Nov 27;11:585146. doi: 10.3389/fimmu.2020.585146. eCollection 2020.
6
Optimization of RG1-VLP vaccine performance in mice with novel TLR4 agonists.
Vaccine. 2021 Jan 8;39(2):292-302. doi: 10.1016/j.vaccine.2020.11.066. Epub 2020 Dec 10.
7
Early evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in .
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22984-22991. doi: 10.1073/pnas.1917504117. Epub 2020 Aug 31.
9
Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria.
Nat Commun. 2020 Jun 24;11(1):3276. doi: 10.1038/s41467-020-16889-z.
10
Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms.
Nat Immunol. 2020 Aug;21(8):880-891. doi: 10.1038/s41590-020-0697-2. Epub 2020 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验