Department of Microbiology, University of Pennsylvaniagrid.25879.31 Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA.
Infect Immun. 2022 Aug 18;90(8):e0020822. doi: 10.1128/iai.00208-22. Epub 2022 Jul 14.
Detection of Gram-negative bacterial lipid A by the extracellular sensor, myeloid differentiation 2 (MD2)/Toll-like receptor 4 (TLR4), or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically its phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all tetra-, penta-, and hexa-acylated LOS variants examined activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation. In contrast, both core oligosaccharide and lipid A were required for robust CASP4/5 inflammasome activation in human macrophages, whereas core oligosaccharide was not required to activate mouse macrophages expressing CASP4. Our findings show that human TLR4 and CASP4/5 detect both shared and nonoverlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A and would thereby be expected to constrain the ability of pathogens to evade innate immune detection.
革兰氏阴性菌脂 A 通过细胞外传感器髓样分化 2(MD2)/Toll 样受体 4(TLR4)或细胞内炎性体传感器 CASP4 和 CASP5 的检测,可引发强烈的炎症反应。脂 A 的化学结构,特别是其磷酸化和酰化状态,在不同细菌种属和同一细菌种属内都存在差异,这使得病原体能够逃避或抑制宿主免疫。目前,尚不清楚脂 A 磷酸化或酰化状态的不同改变如何影响人类 TLR4 和 CASP4/5 的激活。本研究使用一组源自鼠疫耶尔森氏菌的工程化脂寡糖(LOS),这些 LOS 具有不同酰化或磷酸化状态的特定脂 A 结构,我们发现磷酸化状态的差异并不影响 TLR4 或 CASP4/5 的激活。然而,酰化状态会影响 TLR4 和 CASP4/5 的激活。具体而言,所有被检测的四、五和六酰化 LOS 变体都激活了 CASP4/5 依赖性反应,而 TLR4 仅对五和六酰化 LOS 有反应,而对四酰化 LOS 或五酰化 LOS(在 3'位置缺少二级酰链)没有反应。正如预期的那样,脂 A 本身足以激活 TLR4。相反,在人类巨噬细胞中,脂 A 是 TLR4 强烈激活所必需的,而在表达 CASP4 的小鼠巨噬细胞中,核心寡糖和脂 A 都不是 CASP4/5 炎性体激活所必需的。本研究结果表明,人类 TLR4 和 CASP4/5 能够识别共同和非重叠的 LOS/脂 A 结构,这使先天免疫系统能够识别更广泛的细菌 LOS/脂 A,从而限制了病原体逃避先天免疫检测的能力。