Department of Molecular Microbiology, John Innes Centregrid.14830.3e, Norwich Research Park, Norwich, United Kingdom.
Department of Biochemistry and Metabolism, John Innes Centregrid.14830.3e, Norwich Research Park, Norwich, United Kingdom.
J Bacteriol. 2022 Aug 16;204(8):e0010822. doi: 10.1128/jb.00108-22. Epub 2022 Jul 13.
DNA damage triggers a widely conserved stress response in bacteria called the SOS response, which involves two key regulators, the activator RecA and the transcriptional repressor LexA. Despite the wide conservation of the SOS response, the number of genes controlled by LexA varies considerably between different organisms. The filamentous soil-dwelling bacteria of the genus contain LexA and RecA homologs, but their roles in have not been systematically studied. Here, we demonstrate that RecA and LexA are required for the survival of Streptomyces venezuelae during DNA-damaging conditions and for normal development during unperturbed growth. Monitoring the activity of a fluorescent promoter fusion and LexA protein levels revealed that the activation of the SOS response is delayed in . By combining global transcriptional profiling and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we determined the LexA regulon and defined the core set of DNA damage repair genes that are expressed in response to treatment with the DNA-alkylating agent mitomycin C. Our results show that DNA damage-induced degradation of LexA results in the differential regulation of LexA target genes. Using surface plasmon resonance, we further confirmed the LexA DNA binding motif (SOS box) and demonstrated that LexA displays tight but distinct binding affinities to its target promoters, indicating a graded response to DNA damage. The transcriptional regulator LexA functions as a repressor of the bacterial SOS response, which is induced under DNA-damaging conditions. This results in the expression of genes important for survival and adaptation. Here, we report the regulatory network controlled by LexA in the filamentous antibiotic-producing bacteria and establish the existence of the SOS response in . Collectively, our work reveals significant insights into the DNA damage response in that will promote further studies to understand how these important bacteria adapt to their environment.
DNA 损伤会在细菌中引发一种广泛保守的应激反应,称为 SOS 反应,该反应涉及两个关键调节剂,激活剂 RecA 和转录抑制剂 LexA。尽管 SOS 反应广泛保守,但 LexA 控制的基因数量在不同生物体之间差异很大。丝状土壤细菌属 包含 LexA 和 RecA 同源物,但它们在 中的作用尚未得到系统研究。在这里,我们证明了 RecA 和 LexA 是在 DNA 损伤条件下生存所必需的,并且在未受干扰的生长过程中对正常发育也是必需的。监测荧光 启动子融合和 LexA 蛋白水平的活性表明,SOS 反应的激活在 中被延迟。通过结合全局转录谱分析和染色质免疫沉淀测序(ChIP-seq)分析,我们确定了 LexA 调控组,并定义了一组核心 DNA 损伤修复基因,这些基因在受到 DNA-烷化剂丝裂霉素 C 处理时表达。我们的研究结果表明,LexA 的 DNA 损伤诱导降解导致 LexA 靶基因的差异调控。通过表面等离子体共振,我们进一步证实了 LexA 的 DNA 结合基序(SOS 盒),并表明 LexA 对其靶启动子显示出紧密但不同的结合亲和力,表明对 DNA 损伤的反应呈梯度变化。转录调节因子 LexA 作为细菌 SOS 反应的抑制剂,该反应在 DNA 损伤条件下被诱导。这导致了对生存和适应重要的基因的表达。在这里,我们报告了 LexA 在丝状抗生素产生 细菌中控制的调控网络,并在 中建立了 SOS 反应的存在。总的来说,我们的工作揭示了 中 DNA 损伤反应的重要见解,这将促进进一步的研究,以了解这些重要细菌如何适应其环境。