School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
Comput Methods Programs Biomed. 2022 Sep;224:107011. doi: 10.1016/j.cmpb.2022.107011. Epub 2022 Jul 12.
Operator's capability for accurately comprehending verbal commands is critically important to maintain the performance of human-machine interaction. It can be evaluated by human mental workload measured with electroencephalography (EEG). However, the time duration of different workload conditions within a task session is unequal due to varied psychophysiological processes across individuals. It leads to data imbalance of the EEG for training workload classifiers.
In this study, we propose an EEG feature oversampling technique, Gaussian-SMOTE based feature ensemble (GSMOTE-FE), for workload recognition with imbalanced classes. First, artificial EEG instances are drawn from a Gaussian distribution in the margin between the minority and majority workload classes. Tomek links are detected as clues to remove redundant feature vectors. Then, we embed a feature selection module based on the GINI importance while an ensemble classifier committee with bootstrap aggregating is used to further enhance classification performance.
We validate the GSMOTE-FE framework based on an experiment that simulates operators to understand the correct meaning of the instructions in the Chinese language. Participants' EEG signals and reaction time data were both recorded to validate the proposed workload classifier. Workload classification accuracy and Macro-F1 values are 0.6553 and 0.5862, respectively. Corresponding G-mean and AUC achieve at 0.5757 and 0.5958, respectively.
The performance of the GSMOTE-FE is demonstrated to be comparable with the advanced oversampling techniques. The workload classifier has the capability to indicate low and high levels of the task demand of the Chinese language understanding task.
操作人员准确理解口头指令的能力对于保持人机交互的性能至关重要。它可以通过脑电图 (EEG) 测量的人心理工作量来评估。然而,由于个体之间的心理生理过程不同,任务会话中不同工作负荷条件的持续时间是不相等的。这导致用于训练工作负荷分类器的 EEG 数据不平衡。
在这项研究中,我们提出了一种 EEG 特征过采样技术,基于高斯-SMOTE 的特征集成 (GSMOTE-FE),用于不平衡类别下的工作负荷识别。首先,从少数类和多数类工作负荷之间的边界上的高斯分布中抽取人工 EEG 实例。托梅克链接被检测为去除冗余特征向量的线索。然后,我们嵌入了一个基于基尼重要性的特征选择模块,同时使用引导聚合的集成分类器委员会进一步提高分类性能。
我们基于模拟操作人员理解中文指令正确含义的实验验证了 GSMOTE-FE 框架。记录参与者的 EEG 信号和反应时间数据,以验证所提出的工作负荷分类器。工作负荷分类精度和宏 F1 值分别为 0.6553 和 0.5862。相应的 G-mean 和 AUC 分别达到 0.5757 和 0.5958。
GSMOTE-FE 的性能被证明与先进的过采样技术相当。该工作负荷分类器能够指示中文理解任务的需求水平的高低。