Suppr超能文献

基于 EEG 和领域自适应的跨任务认知工作负荷识别。

Cross-Task Cognitive Workload Recognition Based on EEG and Domain Adaptation.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:50-60. doi: 10.1109/TNSRE.2022.3140456. Epub 2022 Jan 28.

Abstract

Cognitive workload recognition is pivotal to maintain the operator's health and prevent accidents in the human-robot interaction condition. So far, the focus of workload research is mostly restricted to a single task, yet cross-task cognitive workload recognition has remained a challenge. Furthermore, when extending to a new workload condition, the discrepancy of electroencephalogram (EEG) signals across various cognitive tasks limits the generalization of the existed model. To tackle this problem, we propose to construct the EEG-based cross-task cognitive workload recognition models using domain adaptation methods in a leave-one-task-out cross-validation setting, where we view any task of each subject as a domain. Specifically, we first design a fine-grained workload paradigm including working memory and mathematic addition tasks. Then, we explore four domain adaptation methods to bridge the discrepancy between the two different tasks. Finally, based on the supporting vector machine classifier, we conduct experiments to classify the low and high workload levels on a private EEG dataset. Experimental results demonstrate that our proposed task transfer framework outperforms the non-transfer classifier with improvements of 3% to 8% in terms of mean accuracy, and the transfer joint matching (TJM) consistently achieves the best performance.

摘要

认知负荷识别对于维持操作人员在人机交互条件下的健康和预防事故至关重要。到目前为止,工作量研究的重点大多局限于单一任务,但跨任务认知负荷识别仍然是一个挑战。此外,当扩展到新的工作负荷条件时,不同认知任务的脑电图 (EEG) 信号之间的差异限制了现有模型的泛化能力。为了解决这个问题,我们提出使用域自适应方法在离开一个任务的交叉验证设置中构建基于 EEG 的跨任务认知负荷识别模型,其中我们将每个主体的任何任务视为一个域。具体来说,我们首先设计了一个包括工作记忆和数学加法任务的精细工作负荷范式。然后,我们探索了四种域自适应方法来弥合这两个不同任务之间的差异。最后,基于支持向量机分类器,我们在一个私人 EEG 数据集上进行了实验,以分类低和高工作负荷水平。实验结果表明,我们提出的任务转移框架在平均准确率上优于非转移分类器,提高了 3%到 8%,而转移联合匹配 (TJM) 始终表现出最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验