School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
Comput Biol Med. 2019 Jun;109:159-170. doi: 10.1016/j.compbiomed.2019.04.034. Epub 2019 Apr 29.
To estimate the reliability and cognitive states of operator performance in a human-machine collaborative environment, we propose a novel human mental workload (MW) recognizer based on deep learning principles and utilizing the features of the electroencephalogram (EEG). To determine personalized properties in high dimensional EEG indicators, we introduce a feature mapping layer in stacked denoising autoencoder (SDAE) that is capable of preserving the local information in EEG dynamics. The ensemble classifier is then built via the subject-specific integrated deep learning committee, and adapts to the cognitive properties of a specific human operator and alleviates inter-subject feature variations. We validate our algorithms and the ensemble SDAE classifier with local information preservation (denoted by EL-SDAE) on an EEG database collected during the execution of complex human-machine tasks. The classification performance indicates that the EL-SDAE outperforms several classical MW estimators when its optimal network architecture has been identified.
为了评估人机协作环境中操作人员性能的可靠性和认知状态,我们提出了一种基于深度学习原理并利用脑电图(EEG)特征的新型人类心理工作量(MW)识别器。为了确定高维 EEG 指标中的个性化特性,我们在堆叠去噪自动编码器(SDAE)中引入了一个特征映射层,该层能够保留 EEG 动力学中的局部信息。然后通过特定于主题的集成深度学习委员会构建集成分类器,并适应特定人类操作人员的认知特性,减轻了受试者间特征变化的影响。我们使用在执行复杂人机任务期间收集的 EEG 数据库验证了我们的算法和具有局部信息保留功能的集成 SDAE 分类器(表示为 EL-SDAE)。分类性能表明,当确定了其最佳网络架构时,EL-SDAE 优于几种经典的 MW 估计器。