Jaiswal Mohini, Singh Ajeet, Kumar Shailesh
Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
Amino Acids. 2023 Jan;55(1):1-17. doi: 10.1007/s00726-022-03190-0. Epub 2022 Jul 21.
The emergence of antimicrobial peptides (AMPs) as a potential alternative to conventional antibiotics has led to the development of efficient computational methods for predicting AMPs. Among all organisms, the presence of multiple genes encoding AMPs in plants demands the development of a plant-based prediction tool. To this end, we developed models based on multiple peptide features like amino acid composition, dipeptide composition, and physicochemical attributes for predicting plant-derived AMPs. The selected compositional models are integrated into a web server termed PTPAMP. The designed web server is capable of classifying a query peptide sequence into four functional activities, i.e., antimicrobial (AMP), antibacterial (ABP), antifungal (AFP), and antiviral (AVP). Our models achieved an average area under the curve of 0.95, 0.91, 0.85, and 0.88 for AMP, ABP, AFP, and AVP, respectively, on benchmark datasets, which were ~ 6.75% higher than the state-of-the-art methods. Moreover, our analysis indicates the abundance of cysteine residues in plant-derived AMPs and the distribution of other residues like G, S, K, and R, which differ as per the peptide structural family. Finally, we have developed a user-friendly web server, available at the URL: http://www.nipgr.ac.in/PTPAMP/ . We expect the substantial input of this predictor for high-throughput identification of plant-derived AMPs followed by additional insights into their functions.
抗菌肽(AMPs)作为传统抗生素的一种潜在替代品的出现,促使了预测抗菌肽的高效计算方法的发展。在所有生物中,植物中存在多个编码抗菌肽的基因,这就需要开发一种基于植物的预测工具。为此,我们基于多种肽特征(如氨基酸组成、二肽组成和理化属性)开发了用于预测植物源抗菌肽的模型。所选的组成模型被整合到一个名为PTPAMP的网络服务器中。设计的网络服务器能够将查询肽序列分类为四种功能活性,即抗菌(AMP)、抗菌(ABP)、抗真菌(AFP)和抗病毒(AVP)。在基准数据集上,我们的模型对于AMP、ABP、AFP和AVP的曲线下平均面积分别达到了0.95、0.91、0.85和0.88,比现有最先进的方法高出约6.75%。此外,我们的分析表明植物源抗菌肽中半胱氨酸残基的丰度以及其他残基(如G、S、K和R)的分布,这些残基根据肽结构家族的不同而有所差异。最后,我们开发了一个用户友好的网络服务器,网址为:http://www.nipgr.ac.in/PTPAMP/ 。我们期望这个预测器能为高通量鉴定植物源抗菌肽提供大量信息,并有助于进一步深入了解它们的功能。