Suppr超能文献

抗菌肽数据库已有20年历史:近期进展与未来方向。

The antimicrobial peptide database is 20 years old: Recent developments and future directions.

作者信息

Wang Guangshun

机构信息

Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.

出版信息

Protein Sci. 2023 Oct;32(10):e4778. doi: 10.1002/pro.4778.

Abstract

In 2023, the Antimicrobial Peptide Database (currently available at https://aps.unmc.edu) is 20-years-old. The timeline for the APD expansion in peptide entries, classification methods, search functions, post-translational modifications, binding targets, and mechanisms of action of antimicrobial peptides (AMPs) has been summarized in our previous Protein Science paper. This article highlights new database additions and findings. To facilitate antimicrobial development to combat drug-resistant pathogens, the APD has been re-annotating the data for antibacterial activity (active, inactive, and uncertain), toxicity (hemolytic and nonhemolytic AMPs), and salt tolerance (salt sensitive and insensitive). Comparison of the respective desired and undesired AMP groups produces new knowledge for peptide design. Our unification of AMPs from the six life kingdoms into "natural AMPs" enabled the first comparison with globular or transmembrane proteins. Due to the dominance of amphipathic helical and disulfide-linked peptides, cysteine, glycine, and lysine in natural AMPs are much more abundant than those in globular proteins. To include peptides predicted by machine learning, a new "predicted" group has been created. Remarkably, the averaged amino acid composition of predicted peptides is located between the lower bound of natural AMPs and the upper bound of synthetic peptides. Synthetic peptides in the current APD, with the highest cationic and hydrophobic amino acid percentages, are mostly designed with varying degrees of optimization. Hence, natural AMPs accumulated in the APD over 20 years have laid the foundation for machine learning prediction. We discuss future directions for peptide discovery. It is anticipated that the APD will continue to play a role in research and education.

摘要

2023年,抗菌肽数据库(目前可在https://aps.unmc.edu获取)已有20年历史。我们之前发表在《蛋白质科学》上的论文总结了抗菌肽数据库在肽条目、分类方法、搜索功能、翻译后修饰、结合靶点以及抗菌肽作用机制等方面的扩展时间线。本文重点介绍数据库的新增加内容和研究发现。为促进抗菌药物研发以对抗耐药病原体,抗菌肽数据库一直在重新标注抗菌活性(活性、非活性和不确定)、毒性(溶血和非溶血抗菌肽)以及耐盐性(盐敏感和盐不敏感)的数据。对各自期望和不期望的抗菌肽组进行比较为肽设计带来了新知识。我们将来自六个生命王国的抗菌肽统一为“天然抗菌肽”,从而能够首次与球状或跨膜蛋白进行比较。由于两亲性螺旋肽和二硫键连接肽占主导,天然抗菌肽中的半胱氨酸、甘氨酸和赖氨酸比球状蛋白中的丰富得多。为纳入通过机器学习预测的肽,创建了一个新的“预测”组。值得注意的是,预测肽的平均氨基酸组成位于天然抗菌肽下限和合成肽上限之间。当前抗菌肽数据库中的合成肽阳离子和疏水氨基酸百分比最高,大多经过不同程度的优化设计。因此,抗菌肽数据库20多年来积累的天然抗菌肽为机器学习预测奠定了基础。我们讨论了肽发现的未来方向。预计抗菌肽数据库将继续在研究和教育中发挥作用。

相似文献

2
Machine Learning Prediction of Antimicrobial Peptides.
Methods Mol Biol. 2022;2405:1-37. doi: 10.1007/978-1-0716-1855-4_1.
3
Unifying the classification of antimicrobial peptides in the antimicrobial peptide database.
Methods Enzymol. 2022;663:1-18. doi: 10.1016/bs.mie.2021.09.006. Epub 2021 Oct 12.
4
APD3: the antimicrobial peptide database as a tool for research and education.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93. doi: 10.1093/nar/gkv1278. Epub 2015 Nov 23.
5
Improved methods for classification, prediction, and design of antimicrobial peptides.
Methods Mol Biol. 2015;1268:43-66. doi: 10.1007/978-1-4939-2285-7_3.
6
Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
J Appl Microbiol. 2022 Mar;132(3):1573-1596. doi: 10.1111/jam.15314. Epub 2021 Oct 13.
7
Insights into Antimicrobial Peptides from Spiders and Scorpions.
Protein Pept Lett. 2016;23(8):707-21. doi: 10.2174/0929866523666160511151320.
8
CAMPR4: a database of natural and synthetic antimicrobial peptides.
Nucleic Acids Res. 2023 Jan 6;51(D1):D377-D383. doi: 10.1093/nar/gkac933.
9
Unnatural amino acids: promising implications for the development of new antimicrobial peptides.
Crit Rev Microbiol. 2023 Mar;49(2):231-255. doi: 10.1080/1040841X.2022.2047008. Epub 2022 Mar 7.
10
Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine.
Acta Biomater. 2023 Jul 1;164:175-194. doi: 10.1016/j.actbio.2023.04.030. Epub 2023 Apr 24.

引用本文的文献

2
A hybrid framework of generative deep learning for antiviral peptide discovery.
Sci Rep. 2025 Jul 15;15(1):25554. doi: 10.1038/s41598-025-11328-9.
3
α-Helical Structure of Antimicrobial Peptides Enhances Their Activity through Molecular Surface Signatures.
Biochemistry. 2025 Aug 5;64(15):3311-3321. doi: 10.1021/acs.biochem.5c00101. Epub 2025 Jul 13.
4
Progress in the classification, optimization, activity, and application of antimicrobial peptides.
Front Microbiol. 2025 Apr 23;16:1582863. doi: 10.3389/fmicb.2025.1582863. eCollection 2025.
5
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.
Biomolecules. 2025 Apr 3;15(4):524. doi: 10.3390/biom15040524.
6
A review on the screening methods for the discovery of natural antimicrobial peptides.
J Pharm Anal. 2025 Jan;15(1):101046. doi: 10.1016/j.jpha.2024.101046. Epub 2024 Jul 18.
8
A Tachyplesin Antimicrobial Peptide from Theraphosidae Spiders with Potent Antifungal Activity Against .
Microorganisms. 2024 Dec 20;12(12):2648. doi: 10.3390/microorganisms12122648.
9
AI Methods for Antimicrobial Peptides: Progress and Challenges.
Microb Biotechnol. 2025 Jan;18(1):e70072. doi: 10.1111/1751-7915.70072.

本文引用的文献

1
GMMAD: a comprehensive database of human gut microbial metabolite associations with diseases.
BMC Genomics. 2023 Aug 24;24(1):482. doi: 10.1186/s12864-023-09599-5.
2
Peptide YY: A Paneth cell antimicrobial peptide that maintains gut commensalism.
Science. 2023 Aug 4;381(6657):502-508. doi: 10.1126/science.abq3178. Epub 2023 Aug 3.
3
Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning.
Cell Host Microbe. 2023 Aug 9;31(8):1260-1274.e6. doi: 10.1016/j.chom.2023.07.001. Epub 2023 Jul 28.
4
Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in .
Science. 2023 Jul 21;381(6655):eadg5725. doi: 10.1126/science.adg5725.
8
Machine Learning Prediction of Antimicrobial Peptides.
Methods Mol Biol. 2022;2405:1-37. doi: 10.1007/978-1-0716-1855-4_1.
9
Identification of antimicrobial peptides from the human gut microbiome using deep learning.
Nat Biotechnol. 2022 Jun;40(6):921-931. doi: 10.1038/s41587-022-01226-0. Epub 2022 Mar 3.
10
Unifying the classification of antimicrobial peptides in the antimicrobial peptide database.
Methods Enzymol. 2022;663:1-18. doi: 10.1016/bs.mie.2021.09.006. Epub 2021 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验