Suppr超能文献

改进生物地球化学模型以模拟农业生态系统中微生物介导的碳动态

Improving a Biogeochemical Model to Simulate Microbial-Mediated Carbon Dynamics in Agricultural Ecosystems.

作者信息

Deng Jia, Frolking Steve, Bajgain Rajen, Cornell Carolyn R, Wagle Pradeep, Xiao Xiangming, Zhou Jizhong, Basara Jeffrey, Steiner Jean, Li Changsheng

机构信息

Earth Systems Research Center Institute for the Study of Earth, Oceans and Space University of New Hampshire Durham NH USA.

Department of Microbiology and Plant Biology University of Oklahoma Norman OK USA.

出版信息

J Adv Model Earth Syst. 2021 Nov;13(11):e2021MS002752. doi: 10.1029/2021MS002752. Epub 2021 Nov 14.

Abstract

Soil microbes drive decomposition of soil organic matter (SOM) and regulate soil carbon (C) dynamics. Process-based models have been developed to quantify changes in soil organic carbon (SOC) and carbon dioxide (CO) fluxes in agricultural ecosystems. However, microbial processes related to SOM decomposition have not been, or are inadequately, represented in these models, limiting predictions of SOC responses to changes in microbial activities. In this study, we developed a microbial-mediated decomposition model based on a widely used biogeochemical model, DeNitrification-DeComposition (DNDC), to simulate C dynamics in agricultural ecosystems. The model simulates organic matter decomposition, soil respiration, and SOC formation by simulating microbial and enzyme dynamics and their controls on decomposition, and considering impacts of climate, soil, crop, and farming management practices (FMPs) on C dynamics. When evaluated against field observations of net ecosystem CO exchange (NEE) and SOC change in two winter wheat systems, the model successfully captured both NEE and SOC changes under different FMPs. Inclusion of microbial processes improved the model's performance in simulating peak CO fluxes induced by residue return, primarily by capturing priming effects of residue inputs. We also investigated impacts of microbial physiology, SOM, and FMPs on soil C dynamics. Our results demonstrated that residue or manure input drove microbial activity and predominantly regulated the CO fluxes, and manure amendment largely regulated long-term SOC change. The microbial physiology had considerable impacts on the microbial activities and soil C dynamics, emphasizing the necessity of considering microbial physiology and activities when assessing soil C dynamics in agricultural ecosystems.

摘要

土壤微生物驱动土壤有机质(SOM)的分解并调节土壤碳(C)动态。基于过程的模型已被开发出来,用于量化农业生态系统中土壤有机碳(SOC)和二氧化碳(CO₂)通量的变化。然而,与SOM分解相关的微生物过程在这些模型中尚未得到充分体现,这限制了对SOC对微生物活动变化响应的预测。在本研究中,我们基于广泛使用的生物地球化学模型——反硝化-分解(DNDC),开发了一个微生物介导的分解模型,以模拟农业生态系统中的碳动态。该模型通过模拟微生物和酶的动态及其对分解的控制,并考虑气候、土壤、作物和耕作管理措施(FMPs)对碳动态的影响,来模拟有机质分解、土壤呼吸和SOC形成。当根据两个冬小麦系统中净生态系统CO₂交换(NEE)和SOC变化的田间观测进行评估时,该模型成功捕捉了不同FMPs下的NEE和SOC变化。纳入微生物过程提高了模型模拟残茬归还诱导的CO₂通量峰值的性能,主要是通过捕捉残茬输入的激发效应。我们还研究了微生物生理学、SOM和FMPs对土壤碳动态的影响。我们的结果表明,残茬或粪肥输入驱动微生物活动并主要调节CO₂通量,粪肥改良在很大程度上调节了长期SOC变化。微生物生理学对微生物活动和土壤碳动态有相当大的影响,强调了在评估农业生态系统中的土壤碳动态时考虑微生物生理学和活动的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6da0/9286558/ad5b3119c6a7/JAME-13-0-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验