Ratcliff Laura E, Oshima Takayoshi, Nippert Felix, Janzen Benjamin M, Kluth Elias, Goldhahn Rüdiger, Feneberg Martin, Mazzolini Piero, Bierwagen Oliver, Wouters Charlotte, Nofal Musbah, Albrecht Martin, Swallow Jack E N, Jones Leanne A H, Thakur Pardeep K, Lee Tien-Lin, Kalha Curran, Schlueter Christoph, Veal Tim D, Varley Joel B, Wagner Markus R, Regoutz Anna
Department of Materials, Imperial College London, London, SW7 2AZ, UK.
Center for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
Adv Mater. 2022 Sep;34(37):e2204217. doi: 10.1002/adma.202204217. Epub 2022 Aug 17.
Ga O and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga O offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ-Ga O presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure-electronic-structure relationship. Here, density functional theory is used in combination with a machine-learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ-phase. Theoretical results are compared with surface and bulk sensitive soft and hard X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ-Ga O . The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure.
氧化镓及其多晶型物正吸引着越来越多的关注。诸如氧化镓之类的多晶型氧化物体系丰富的结构空间为电子结构工程提供了潜力,这对于一系列应用(如功率电子学)而言尤为重要。由于其固有的无序性以及由此产生的复杂结构 - 电子结构关系,γ - 氧化镓在合成、表征和理论方面都面临着特殊的挑战。在此,密度泛函理论与机器学习方法相结合,用于筛选近百万种潜在结构,从而建立了一个可靠的γ相原子模型。将理论结果与代表γ - 氧化镓占据态和未占据态的表面和体相灵敏的软X射线光电子能谱、硬X射线光电子能谱、X射线吸收光谱、光谱椭偏仪和光致发光激发光谱实验进行了比较。通过光谱椭偏仪发现室温下强吸收的首次出现是在5.1电子伏特,这与光致发光激发光谱获得的5.17电子伏特的激发最大值吻合得很好,而后者在5K时移至5.33电子伏特。这项工作在处理复杂无序氧化物方面取得了飞跃,是朝着探索如何根据局部配位和整体结构来理解其电子结构迈出的关键一步。