Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China.
Nano Lett. 2022 Aug 10;22(15):6083-6090. doi: 10.1021/acs.nanolett.2c01042. Epub 2022 Jul 22.
Plasmonic nanocavities, with the ability to localize and concentrate light into nanometer-scale dimensions, have been widely used for ultrasensitive spectroscopy, biosensing, and photodetection. However, as the nanocavity gap approaches the subnanometer length scale, plasmonic enhancement, together with plasmonic enhanced optical processes, turns to quenching because of quantum mechanical effects. Here, instead of quenching, we show that quantum mechanical effects of plasmonic nanocavities can elevate surface-enhanced infrared absorption (SEIRA) of molecular moieties. The plasmonic nanocavities, nanojunctions of gold and cadmium oxide nanoparticles, support prominent mid-infrared plasmonic resonances and enable SEIRA of an alkanethiol monolayer (CH(CH)SH, = 3-16). With a subnanometer cavity gap ( < 6), plasmonic resonances turn to blue shift and the SEIRA signal starts a pronounced increase, benefiting from the quantum tunneling effect across the plasmonic nanocavities. Our findings demonstrate the new possibility of optimizing the field enhancement and SEIRA sensitivity of mid-infrared plasmonic nanocavities.
等离子体纳米腔具有将光局域和集中到纳米尺度的能力,已被广泛应用于超灵敏光谱学、生物传感和光电检测。然而,随着纳米腔隙接近亚纳米长度尺度,由于量子力学效应,等离子体增强以及等离子体增强的光学过程会转向猝灭。在这里,我们展示了等离子体纳米腔的量子力学效应可以提高分子部分的表面增强红外吸收(SEIRA)。金和氧化镉纳米颗粒的纳米结支持突出的中红外等离子体共振,并使烷硫醇单层(CH(CH)SH, = 3-16)的 SEIRA 成为可能。在亚纳米腔隙( < 6)下,等离子体共振发生蓝移,SEIRA 信号开始显著增加,这得益于穿过等离子体纳米腔的量子隧道效应。我们的研究结果表明了优化中红外等离子体纳米腔的场增强和 SEIRA 灵敏度的新可能性。