Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States.
Nano Lett. 2015 Jan 14;15(1):107-13. doi: 10.1021/nl503126s. Epub 2014 Dec 11.
We have combined atomic layer lithography and template stripping to produce a new class of substrates for surface-enhanced infrared absorption (SEIRA) spectroscopy. Our structure consists of a buried and U-shaped metal-insulator-metal waveguide whose folded vertical arms efficiently couple normally incident light. The insulator is formed by atomic layer deposition (ALD) of Al2O3 and precisely defines the gap size. The buried nanocavities are protected from contamination by a silicon template until ready for use and exposed by template stripping on demand. The exposed nanocavity generates strong infrared resonances, tightly confines infrared radiation into a gap that is as small as 3 nm (λ/3300), and creates a dense array of millimeter-long hotspots. After partial removal of the insulators, the gaps are backfilled with benzenethiol molecules, generating distinct Fano resonances due to strong coupling with gap plasmons, and a SEIRA enhancement factor of 10(5) is observed for a 3 nm gap. Because of the wafer-scale manufacturability, single-digit-nanometer control of the gap size via ALD, and long-term storage enabled by template stripping, our buried plasmonic nanocavity substrates will benefit broad applications in sensing and spectroscopy.
我们将原子层沉积和模板剥离技术相结合,制备了一种新型的表面增强红外吸收(SEIRA)光谱学衬底。我们的结构由埋置 U 型金属-绝缘体-金属波导组成,其折叠的垂直臂可高效地耦合垂直入射光。绝缘体由原子层沉积(ALD)的 Al2O3 形成,并精确限定了间隙尺寸。埋置纳米腔通过硅模板进行保护,避免受到污染,可按需通过模板剥离来暴露纳米腔。暴露的纳米腔会产生强烈的红外共振,将红外辐射紧密限制在小至 3nm(λ/3300)的间隙中,并产生密集的毫米级热点阵列。部分去除绝缘体后,用苯硫醇分子填充间隙,由于与间隙等离子体的强耦合,会产生明显的 Fano 共振,并且对于 3nm 的间隙,观察到 SEIRA 增强因子为 10(5)。由于其具备晶圆级制造能力、通过 ALD 实现单个纳米数量级的间隙尺寸控制以及通过模板剥离实现的长期存储能力,我们的埋置等离子体纳米腔衬底将广泛受益于传感和光谱学等领域。