Sigle Daniel O, Mertens Jan, Herrmann Lars O, Bowman Richard W, Ithurria Sandrine, Dubertret Benoit, Shi Yumeng, Yang Hui Ying, Tserkezis Christos, Aizpurua Javier, Baumberg Jeremy J
NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge , Cambridge, CB3 0HE, United Kingdom.
ACS Nano. 2015 Jan 27;9(1):825-30. doi: 10.1021/nn5064198. Epub 2014 Dec 17.
Nanometer-sized gaps between plasmonically coupled adjacent metal nanoparticles enclose extremely localized optical fields, which are strongly enhanced. This enables the dynamic investigation of nanoscopic amounts of material in the gap using optical interrogation. Here we use impinging light to directly tune the optical resonances inside the plasmonic nanocavity formed between single gold nanoparticles and a gold surface, filled with only yoctograms of semiconductor. The gold faces are separated by either monolayers of molybdenum disulfide (MoS2) or two-unit-cell thick cadmium selenide (CdSe) nanoplatelets. This extreme confinement produces modes with 100-fold compressed wavelength, which are exquisitely sensitive to morphology. Infrared scattering spectroscopy reveals how such nanoparticle-on-mirror modes directly trace atomic-scale changes in real time. Instabilities observed in the facets are crucial for applications such as heat-assisted magnetic recording that demand long-lifetime nanoscale plasmonic structures, but the spectral sensitivity also allows directly tracking photochemical reactions in these 2-dimensional solids.
等离子体耦合的相邻金属纳米颗粒之间的纳米级间隙包围着极强增强的极其局域化的光场。这使得能够使用光学探测对间隙中纳米级数量的材料进行动态研究。在这里,我们使用入射光直接调谐在单个金纳米颗粒与金表面之间形成的等离子体纳米腔内的光学共振,该纳米腔内仅填充了约克级的半导体。金表面由单层二硫化钼(MoS2)或两个晶胞厚的硒化镉(CdSe)纳米片分隔。这种极端的限制产生了波长压缩100倍的模式,这些模式对形态极其敏感。红外散射光谱揭示了这种镜上纳米颗粒模式如何实时直接追踪原子尺度的变化。在小平面中观察到的不稳定性对于诸如热辅助磁记录等需要长寿命纳米级等离子体结构的应用至关重要,但光谱灵敏度也允许直接跟踪这些二维固体中的光化学反应。