Suppr超能文献

基于黎曼流形的特征空间及相应的图像聚类算法。

Riemannian Manifold-Based Feature Space and Corresponding Image Clustering Algorithms.

作者信息

Zhao Xuemei, Li Chen, Wu Jun, Li Xiaoli

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2680-2693. doi: 10.1109/TNNLS.2022.3190836. Epub 2024 Feb 5.

Abstract

Image feature representation is a key factor influencing the accuracy of clustering. Traditional point-based feature spaces represent spectral features of an image independently and introduce spatial relationships of pixels in the image domain to enhance the contextual information expression ability. Mapping-based feature spaces aim to preserve the structure information, but the complex computation and the unexplainability of image features have a great impact on their applications. To this end, we propose an explicit feature space called Riemannian manifold feature space (RMFS) to present the contextual information in a unified way. First, the Gaussian probability distribution function (pdf) is introduced to characterize the features of a pixel in its neighborhood system in the image domain. Then, the feature-related pdfs are mapped to a Riemannian manifold, which constructs the proposed RMFS. In RMFS, a point can express the complex contextual information of corresponding pixel in the image domain, and pixels representing the same object are linearly distributed. This gives us a chance to convert nonlinear image segmentation problems to linear computation. To verify the superiority of the expression ability of the proposed RMFS, a linear clustering algorithm and a fuzzy linear clustering algorithm are proposed. Experimental results show that the proposed RMFS-based algorithms outperform their counterparts in the spectral feature space and the RMFS-based ones without the linear distribution characteristics. This indicates that the RMFS can better express features of an image than spectral feature space, and the expressed features can be easily used to construct linear segmentation models.

摘要

图像特征表示是影响聚类准确性的关键因素。传统的基于点的特征空间独立地表示图像的光谱特征,并引入图像域中像素的空间关系以增强上下文信息表达能力。基于映射的特征空间旨在保留结构信息,但图像特征的复杂计算和不可解释性对其应用有很大影响。为此,我们提出了一种名为黎曼流形特征空间(RMFS)的显式特征空间,以统一的方式呈现上下文信息。首先,引入高斯概率分布函数(pdf)来表征图像域中像素在其邻域系统中的特征。然后,将与特征相关的概率密度函数映射到黎曼流形上,从而构建所提出的RMFS。在RMFS中,一个点可以表达图像域中相应像素的复杂上下文信息,并且表示同一对象的像素呈线性分布。这使我们有机会将非线性图像分割问题转换为线性计算。为了验证所提出的RMFS表达能力的优越性,提出了一种线性聚类算法和一种模糊线性聚类算法。实验结果表明,所提出的基于RMFS的算法优于光谱特征空间中的同类算法以及不具有线性分布特征的基于RMFS的算法。这表明RMFS比光谱特征空间能更好地表达图像特征,并且所表达的特征可以很容易地用于构建线性分割模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验