IEEE Trans Image Process. 2023;32:2132-2146. doi: 10.1109/TIP.2023.3263102. Epub 2023 Apr 6.
Infrared image segmentation is a challenging task, due to interference of complex background and appearance inhomogeneity of foreground objects. A critical defect of fuzzy clustering for infrared image segmentation is that the method treats image pixels or fragments in isolation. In this paper, we propose to adopt self-representation from sparse subspace clustering in fuzzy clustering, aiming to introduce global correlation information into fuzzy clustering. Meanwhile, to apply sparse subspace clustering for non-linear samples from an infrared image, we leverage membership from fuzzy clustering to improve conventional sparse subspace clustering. The contributions of this paper are fourfold. First, by introducing self-representation coefficients modeled in sparse subspace clustering based on high-dimensional features, fuzzy clustering is capable of utilizing global information to resist complex background as well as intensity inhomogeneity of objects, so as to improve clustering accuracy. Second, fuzzy membership is tactfully exploited in the sparse subspace clustering framework. Thereby, the bottleneck of conventional sparse subspace clustering methods, that they could be barely applied to nonlinear samples, can be surmounted. Third, as we integrate fuzzy clustering and subspace clustering in a unified framework, features from two different aspects are employed, contributing to precise clustering results. Finally, we further incorporate neighbor information into clustering, thus effectively solving the uneven intensity problem in infrared image segmentation. Experiments examine the feasibility of proposed methods on various infrared images. Segmentation results demonstrate the effectiveness and efficiency of the proposed methods, which proves the superiority compared to other fuzzy clustering methods and sparse space clustering methods.
红外图像分割是一项具有挑战性的任务,由于复杂背景和前景对象的外观不均匀性的干扰。模糊聚类在红外图像分割中的一个关键缺陷是该方法将图像像素或片段孤立地处理。在本文中,我们提出在模糊聚类中采用自表示从稀疏子空间聚类,旨在将全局相关性信息引入模糊聚类。同时,为了将稀疏子空间聚类应用于来自红外图像的非线性样本,我们利用模糊聚类的隶属度来改进传统的稀疏子空间聚类。本文的贡献有四点。首先,通过引入基于高维特征的稀疏子空间聚类中的自表示系数,模糊聚类能够利用全局信息来抵抗复杂的背景以及物体的强度不均匀性,从而提高聚类精度。其次,巧妙地利用了模糊隶属度在稀疏子空间聚类框架中。从而克服了传统稀疏子空间聚类方法的瓶颈,即它们几乎无法应用于非线性样本。第三,由于我们将模糊聚类和子空间聚类集成到一个统一的框架中,因此可以利用来自两个不同方面的特征,从而得到更精确的聚类结果。最后,我们进一步将邻域信息融入聚类中,从而有效地解决了红外图像分割中的不均匀强度问题。实验在各种红外图像上检验了所提出方法的可行性。分割结果证明了所提出方法的有效性和效率,与其他模糊聚类方法和稀疏空间聚类方法相比具有优越性。