IEEE J Biomed Health Inform. 2022 Oct;26(10):5201-5212. doi: 10.1109/JBHI.2022.3193291. Epub 2022 Oct 5.
Automatic International Classification of Diseases (ICD) coding is defined as a kind of text multi-label classification problem, which is difficult because the number of labels is very large and the distribution of labels is unbalanced. The label-wise attention mechanism is widely used in automatic ICD coding because it can assign weights to every word in full Electronic Medical Records (EMR) for different ICD codes. However, the label-wise attention mechanism is redundant and costly in computing. In this paper, we propose a pseudo label-wise attention mechanism to tackle the problem. Instead of computing different attention modes for different ICD codes, the pseudo label-wise attention mechanism automatically merges similar ICD codes and computes only one attention mode for the similar ICD codes, which greatly compresses the number of attention modes and improves the predicted accuracy. In addition, we apply a more convenient and effective way to obtain the ICD vectors, and thus our model can predict new ICD codes by calculating the similarities between EMR vectors and ICD vectors. Our model demonstrates effectiveness in extensive computational experiments. On the public MIMIC-III dataset and private Xiangya dataset, our model achieves the best performance on micro F1 (0.583 and 0.806), micro AUC (0.986 and 0.994), P@8 (0.756 and 0.413), and costs much smaller GPU memory (about 26.1% of the models with label-wise attention). Furthermore, we verify the ability of our model in predicting new ICD codes. The interpretablility analysis and case study show the effectiveness and reliability of the patterns obtained by the pseudo label-wise attention mechanism.
自动国际疾病分类 (ICD) 编码被定义为一种文本多标签分类问题,由于标签数量非常大且标签分布不平衡,因此具有一定难度。标签注意力机制在自动 ICD 编码中得到了广泛应用,因为它可以为电子病历 (EMR) 中的每个单词分配不同 ICD 码的权重。然而,标签注意力机制在计算上是冗余且昂贵的。在本文中,我们提出了一种伪标签注意力机制来解决这个问题。与为不同的 ICD 码计算不同的注意力模式不同,伪标签注意力机制自动合并相似的 ICD 码,并为相似的 ICD 码仅计算一个注意力模式,这大大压缩了注意力模式的数量,并提高了预测准确性。此外,我们应用了一种更方便有效的方法来获取 ICD 向量,因此我们的模型可以通过计算 EMR 向量和 ICD 向量之间的相似度来预测新的 ICD 码。我们的模型在广泛的计算实验中证明了其有效性。在公共 MIMIC-III 数据集和私有湘雅数据集上,我们的模型在微 F1(0.583 和 0.806)、微 AUC(0.986 和 0.994)、P@8(0.756 和 0.413)上均取得了最佳性能,且 GPU 内存消耗小得多(约为具有标签注意力机制的模型的 26.1%)。此外,我们验证了我们的模型在预测新 ICD 码方面的能力。可解释性分析和案例研究表明了伪标签注意力机制获得的模式的有效性和可靠性。