Suppr超能文献

使用分层标签分类注意力网络和标签嵌入初始化来实现临床笔记的可解释自动化编码。

Explainable automated coding of clinical notes using hierarchical label-wise attention networks and label embedding initialisation.

机构信息

Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom; Health Data Research UK, London, United Kingdom.

Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom; Health Data Research UK, London, United Kingdom.

出版信息

J Biomed Inform. 2021 Apr;116:103728. doi: 10.1016/j.jbi.2021.103728. Epub 2021 Mar 9.

Abstract

BACKGROUND

Diagnostic or procedural coding of clinical notes aims to derive a coded summary of disease-related information about patients. Such coding is usually done manually in hospitals but could potentially be automated to improve the efficiency and accuracy of medical coding. Recent studies on deep learning for automated medical coding achieved promising performances. However, the explainability of these models is usually poor, preventing them to be used confidently in supporting clinical practice. Another limitation is that these models mostly assume independence among labels, ignoring the complex correlations among medical codes which can potentially be exploited to improve the performance.

METHODS

To address the issues of model explainability and label correlations, we propose a Hierarchical Label-wise Attention Network (HLAN), which aimed to interpret the model by quantifying importance (as attention weights) of words and sentences related to each of the labels. Secondly, we propose to enhance the major deep learning models with a label embedding (LE) initialisation approach, which learns a dense, continuous vector representation and then injects the representation into the final layers and the label-wise attention layers in the models. We evaluated the methods using three settings on the MIMIC-III discharge summaries: full codes, top-50 codes, and the UK NHS (National Health Service) COVID-19 (Coronavirus disease 2019) shielding codes. Experiments were conducted to compare the HLAN model and label embedding initialisation to the state-of-the-art neural network based methods, including variants of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

RESULTS

HLAN achieved the best Micro-level AUC and F on the top-50 code prediction, 91.9% and 64.1%, respectively; and comparable results on the NHS COVID-19 shielding code prediction to other models: around 97% Micro-level AUC. More importantly, in the analysis of model explanations, by highlighting the most salient words and sentences for each label, HLAN showed more meaningful and comprehensive model interpretation compared to the CNN-based models and its downgraded baselines, HAN and HA-GRU. Label embedding (LE) initialisation significantly boosted the previous state-of-the-art model, CNN with attention mechanisms, on the full code prediction to 52.5% Micro-level F. The analysis of the layers initialised with label embeddings further explains the effect of this initialisation approach. The source code of the implementation and the results are openly available at https://github.com/acadTags/Explainable-Automated-Medical-Coding.

CONCLUSION

We draw the conclusion from the evaluation results and analyses. First, with hierarchical label-wise attention mechanisms, HLAN can provide better or comparable results for automated coding to the state-of-the-art, CNN-based models. Second, HLAN can provide more comprehensive explanations for each label by highlighting key words and sentences in the discharge summaries, compared to the n-grams in the CNN-based models and the downgraded baselines, HAN and HA-GRU. Third, the performance of deep learning based multi-label classification for automated coding can be consistently boosted by initialising label embeddings that captures the correlations among labels. We further discuss the advantages and drawbacks of the overall method regarding its potential to be deployed to a hospital and suggest areas for future studies.

摘要

背景

临床记录的诊断或程序编码旨在得出有关患者疾病相关信息的编码摘要。这种编码通常在医院中手动完成,但可以通过自动化来提高医疗编码的效率和准确性。最近在深度学习方面进行的自动医疗编码研究取得了有希望的成果。然而,这些模型的可解释性通常较差,阻止它们在支持临床实践中被自信地使用。另一个限制是这些模型主要假设标签之间的独立性,忽略了医疗代码之间的复杂相关性,这些相关性可以被利用来提高性能。

方法

为了解决模型可解释性和标签相关性的问题,我们提出了一种层次标签注意力网络(HLAN),旨在通过量化与每个标签相关的单词和句子的重要性(作为注意力权重)来解释模型。其次,我们提出通过标签嵌入(LE)初始化方法增强主要的深度学习模型,该方法学习密集、连续的向量表示,然后将表示注入模型的最后几层和标签注意力层。我们使用 MIMIC-III 出院记录中的三种设置来评估方法:全代码、前 50 个代码和英国 NHS(国家卫生服务)COVID-19(2019 年冠状病毒病)屏蔽代码。进行了实验以比较 HLAN 模型和标签嵌入初始化与最先进的基于神经网络的方法,包括卷积神经网络(CNNs)和递归神经网络(RNNs)的变体。

结果

HLAN 在预测前 50 个代码方面取得了最佳的 Micro-level AUC 和 F,分别为 91.9%和 64.1%;在预测英国 NHS COVID-19 屏蔽代码方面与其他模型相当:大约 97%的 Micro-level AUC。更重要的是,在模型解释的分析中,HLAN 通过突出每个标签的最显著的单词和句子,与基于 CNN 的模型及其降级基线 HAN 和 HA-GRU 相比,提供了更有意义和全面的模型解释。标签嵌入(LE)初始化显著提高了以前基于注意力机制的 CNN 对全代码预测的性能,达到 52.5%的 Micro-level F。对用标签嵌入初始化的层的分析进一步解释了这种初始化方法的效果。实现的源代码和结果可在 https://github.com/acadTags/Explainable-Automated-Medical-Coding 上公开获取。

结论

我们从评估结果和分析中得出结论。首先,通过层次标签注意力机制,HLAN 可以为自动化编码提供与最先进的基于 CNN 的模型相当或更好的结果。其次,HLAN 可以通过突出出院记录中的关键词和句子来提供每个标签的更全面的解释,与基于 CNN 的模型和降级基线 HAN 和 HA-GRU 中的 n-grams 相比。第三,通过初始化捕获标签之间相关性的标签嵌入,可以一致地提高基于深度学习的多标签分类的性能,用于自动化编码。我们进一步讨论了该方法在潜在部署到医院方面的优缺点,并提出了未来研究的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验