Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia.
Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia.
J Biomed Inform. 2022 Sep;133:104161. doi: 10.1016/j.jbi.2022.104161. Epub 2022 Aug 20.
International Classification of Diseases (ICD) coding plays an important role in systematically classifying morbidity and mortality data. In this study, we propose a hierarchical label-wise attention Transformer model (HiLAT) for the explainable prediction of ICD codes from clinical documents. HiLAT firstly fine-tunes a pretrained Transformer model to represent the tokens of clinical documents. We subsequently employ a two-level hierarchical label-wise attention mechanism that creates label-specific document representations. These representations are in turn used by a feed-forward neural network to predict whether a specific ICD code is assigned to the input clinical document of interest. We evaluate HiLAT using hospital discharge summaries and their corresponding ICD-9 codes from the MIMIC-III database. To investigate the performance of different types of Transformer models, we develop ClinicalplusXLNet, which conducts continual pretraining from XLNet-Base using all the MIMIC-III clinical notes. The experiment results show that the F1 scores of the HiLAT + ClinicalplusXLNet outperform the previous state-of-the-art models for the top-50 most frequent ICD-9 codes from MIMIC-III. Visualisations of attention weights present a potential explainability tool for checking the face validity of ICD code predictions.
国际疾病分类(ICD)编码在系统分类发病率和死亡率数据方面发挥着重要作用。在这项研究中,我们提出了一种分层标签式注意力转换器模型(HiLAT),用于从临床文档中可解释地预测 ICD 编码。HiLAT 首先微调一个预先训练的转换器模型来表示临床文档的标记。然后,我们采用两级分层标签式注意力机制来创建特定标签的文档表示。这些表示随后由前馈神经网络使用,以预测特定的 ICD 代码是否分配给感兴趣的输入临床文档。我们使用来自 MIMIC-III 数据库的住院小结及其相应的 ICD-9 代码来评估 HiLAT。为了研究不同类型的转换器模型的性能,我们开发了 ClinicalplusXLNet,它使用所有的 MIMIC-III 临床记录对 XLNet-Base 进行持续预训练。实验结果表明,HiLAT + ClinicalplusXLNet 的 F1 分数优于之前的最先进模型,用于 MIMIC-III 中前 50 个最常见的 ICD-9 代码。注意力权重的可视化提供了一种潜在的可解释性工具,用于检查 ICD 编码预测的表面有效性。