State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.
J Am Chem Soc. 2022 Aug 3;144(30):13634-13642. doi: 10.1021/jacs.2c04025. Epub 2022 Jul 22.
Radon (Rn), a ubiquitous radioactive noble gas, is the main source of natural radiation to human and one of the major culprits for lung cancer. Reducing ambient Rn concentration by porous materials is considered as the most feasible and energy-saving option to lower this risk, but the in-depth Rn removal under ambient conditions remains an unresolved challenge, mainly due to the weak van der Waals (vdW) interaction between inert Rn and adsorbents and the extremely low partial pressure (<1.8 × 10 bar, <10 Bq/m) of Rn in air. Adsorbents having either favorable adsorption thermodynamics or feasible diffusion kinetics perform poorly in in-depth Rn removal. Herein, we report the discovery of a metal-organic framework (ZIF-7-Im) for efficient Rn capture guided by computational screening and modeling. The size-matched pores in ZIF-7-Im abide by the thermodynamically favorable principle and the exquisitely engineered quasi-open apertures allow for feasible kinetics with little sacrifice of sorption thermodynamics. The as-prepared material can reduce the Rn concentration from hazardous levels to that below the detection limit of the Rn detector under ambient conditions, with an improvement of at least two orders of amplitude on the removal depth compared to the currently best-performing and only commercialized material activated charcoal.
氡(Rn)是一种普遍存在的放射性惰性气体,是人类天然辐射的主要来源之一,也是肺癌的主要罪魁祸首之一。通过多孔材料降低环境中的 Rn 浓度被认为是降低这种风险的最可行和最节能的选择,但在环境条件下深入去除 Rn 仍然是一个未解决的挑战,主要是由于惰性 Rn 和吸附剂之间较弱的范德华(vdW)相互作用以及空气中 Rn 的极低分压(<1.8×10-1.8 bar,<10 Bq/m)。在深入去除 Rn 方面,具有有利吸附热力学或可行扩散动力学的吸附剂表现不佳。在此,我们报告了一种基于计算筛选和建模的高效 Rn 捕获金属有机骨架(ZIF-7-Im)的发现。ZIF-7-Im 中的尺寸匹配孔遵循有利的热力学原则,而精心设计的准开放孔允许在动力学上可行,而对吸附热力学的牺牲很小。在环境条件下,所制备的材料可以将 Rn 浓度从危险水平降低到 Rn 探测器的检测限以下,与目前表现最好且唯一商业化的活性炭材料相比,去除深度至少提高了两个数量级。