Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
J Am Chem Soc. 2022 Aug 3;144(30):13815-13822. doi: 10.1021/jacs.2c04986. Epub 2022 Jul 22.
In proteins, the amino acids Phe, Tyr, and especially Trp are frequently involved in π interactions such as π-π, cation-π, and CH-π bonds. These interactions are often crucial for protein structure and protein-ligand binding. A powerful means to study these interactions is progressive fluorination of these aromatic residues to modulate the electrostatic component of the interaction. However, to date no protein expression platform is available to produce milligram amounts of proteins labeled with such fluorinated amino acids. Here, we present a Trp auxotroph-based expression system for efficient incorporation (≥95%) of mono-, di-, tri-, and tetrafluorinated, as well as a methylated Trp analog. As a model protein we have chosen LmrR, a dimeric multidrug transcriptional repressor protein from LmrR binds aromatic drugs, like daunomycin and riboflavin, between Trp96 and Trp96' in the dimer interface. Progressive fluorination of Trp96 decreased the affinity for the drugs 6- to 70-fold, clearly establishing the importance of electrostatic π-π interactions for drug binding. Presteady state kinetic data of the LmrR-drug interaction support the enthalpic nature of the interaction, while high resolution crystal structures of the labeled protein-drug complexes provide for the first time a structural view of the progressive fluorination approach. The expression system was also used to study the role of Trp68 in the binding of riboflavin by the membrane-bound riboflavin transport protein RibU from . Progressive fluorination of Trp68 revealed a strong electrostatic component that contributed 15-20% to the total riboflavin-RibU binding energy.
在蛋白质中,苯丙氨酸(Phe)、酪氨酸(Tyr)和色氨酸(Trp)等氨基酸经常参与π相互作用,如π-π、阳离子-π 和 CH-π 键。这些相互作用对于蛋白质结构和蛋白质-配体结合通常至关重要。研究这些相互作用的一种有力手段是对这些芳香族残基进行逐步氟化,以调节相互作用的静电分量。然而,迄今为止,还没有可用于生产标记有此类氟化氨基酸的毫克量蛋白质的蛋白质表达平台。在这里,我们提出了一种基于色氨酸营养缺陷型的表达系统,可高效掺入(≥95%)单、二、三、四氟化以及甲基化色氨酸类似物。我们选择了 LmrR 作为模型蛋白,LmrR 是一种二聚体多药物转录阻遏蛋白,来自 LmrR 结合芳香族药物,如柔红霉素和核黄素,位于二聚体界面的色氨酸 96 和色氨酸 96'之间。色氨酸 96 的逐步氟化使药物亲和力降低了 6 至 70 倍,这清楚地证明了静电 π-π 相互作用对药物结合的重要性。LmrR-药物相互作用的预稳态动力学数据支持相互作用的焓性质,而标记蛋白-药物复合物的高分辨率晶体结构首次提供了逐步氟化方法的结构观点。该表达系统还用于研究色氨酸 68 在结合黄素的作用 来自 的膜结合黄素转运蛋白 RibU。色氨酸 68 的逐步氟化揭示了一个很强的静电分量,它对黄素-RibU 结合能的贡献为 15-20%。