Suppr超能文献

突变负担与肿瘤基因组亚型正交,可明确免疫检查点治疗的反应。

Mutation burden-orthogonal tumor genomic subtypes delineate responses to immune checkpoint therapy.

机构信息

Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Life Science Informatics Research Unit, Department of Molecular Biosciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.

出版信息

J Immunother Cancer. 2022 Jul;10(7). doi: 10.1136/jitc-2022-004831.

Abstract

BACKGROUND

In cancer therapy, higher-resolution tumor-agnostic biomarkers that predict response to immune checkpoint inhibitor (ICI) therapy are needed. Mutation signatures reflect underlying oncogenic processes that can affect tumor immunogenicity, and thus potentially delineate ICI treatment response among tumor types.

METHODS

Based on mutational signature analysis, we developed a stratification for all solid tumors in The Cancer Genome Atlas (TCGA). Subsequently, we developed a new software (Genomic Subtyping and Predictive Response Analysis for Cancer Tumor ICi Efficacy, GS-PRACTICE) to classify new tumors submitted to whole-exome sequencing. Using existing data from 973 pan-cancer ICI-treated cases with outcomes, we evaluated the subtype-response predictive performance.

RESULTS

Systematic analysis on TCGA samples identified eight tumor genomic subtypes, which were characterized by features represented by smoking exposure, ultraviolet light exposure, APOBEC enzyme activity, mutation, mismatch repair deficiency, homologous recombination deficiency, genomic stability, and aging. The former five subtypes were presumed to form an immune-responsive group acting as candidates for ICI therapy because of their high expression of immune-related genes and enrichment in cancer types with FDA approval for ICI monotherapy. In the validation cohort, the samples assigned by GS-PRACTICE to the immune-reactive subtypes were significantly associated with ICI response independent of cancer type and TMB high or low status.

CONCLUSIONS

The new tumor subtyping method can serve as a tumor-agnostic biomarker for ICI response prediction and will improve decision making in cancer treatment.

摘要

背景

在癌症治疗中,需要更高分辨率的肿瘤非特异性生物标志物来预测免疫检查点抑制剂 (ICI) 治疗的反应。突变特征反映了潜在的致癌过程,这些过程可能会影响肿瘤的免疫原性,从而有可能在肿瘤类型之间划定 ICI 治疗反应。

方法

基于突变特征分析,我们为癌症基因组图谱 (TCGA) 中的所有实体瘤制定了分层。随后,我们开发了一种新软件(癌症肿瘤 ICi 疗效的基因组分型和预测反应分析,GS-PRACTICE)来对提交全外显子测序的新肿瘤进行分类。利用来自 973 例接受 ICI 治疗的泛癌症病例的现有数据,我们评估了亚型反应预测性能。

结果

TCGA 样本的系统分析确定了 8 种肿瘤基因组亚型,其特征是由吸烟暴露、紫外线暴露、APOBEC 酶活性、突变、错配修复缺陷、同源重组缺陷、基因组稳定性和衰老代表的特征。前五种亚型被认为是免疫反应组,因为它们高表达免疫相关基因,并在癌症类型中富集,这些癌症类型已获得 ICI 单药治疗的 FDA 批准。在验证队列中,GS-PRACTICE 分配给免疫反应亚型的样本与 ICI 反应显著相关,与癌症类型和 TMB 高低状态无关。

结论

新的肿瘤分型方法可以作为预测 ICI 反应的肿瘤非特异性生物标志物,并将改善癌症治疗的决策制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7007/9289027/e38eb1a0017c/jitc-2022-004831f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验