Suppr超能文献

单细胞和批量 RNA 测序数据的综合分析揭示了一个泛癌干性特征,可预测免疫治疗反应。

Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response.

机构信息

Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.

Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.

出版信息

Genome Med. 2022 Apr 29;14(1):45. doi: 10.1186/s13073-022-01050-w.

Abstract

BACKGROUND

Although immune checkpoint inhibitor (ICI) is regarded as a breakthrough in cancer therapy, only a limited fraction of patients benefit from it. Cancer stemness can be the potential culprit in ICI resistance, but direct clinical evidence is lacking.

METHODS

Publicly available scRNA-Seq datasets derived from ICI-treated patients were collected and analyzed to elucidate the association between cancer stemness and ICI response. A novel stemness signature (Stem.Sig) was developed and validated using large-scale pan-cancer data, including 34 scRNA-Seq datasets, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 10 ICI transcriptomic cohorts. The therapeutic value of Stem.Sig genes was further explored using 17 CRISPR datasets that screened potential immunotherapy targets.

RESULTS

Cancer stemness, as evaluated by CytoTRACE, was found to be significantly associated with ICI resistance in melanoma and basal cell carcinoma (both P < 0.001). Significantly negative association was found between Stem.Sig and anti-tumor immunity, while positive correlations were detected between Stem.Sig and intra-tumoral heterogenicity (ITH) / total mutational burden (TMB). Based on this signature, machine learning model predicted ICI response with an AUC of 0.71 in both validation and testing set. Remarkably, compared with previous well-established signatures, Stem.Sig achieved better predictive performance across multiple cancers. Moreover, we generated a gene list ranked by the average effect of each gene to enhance tumor immune response after genetic knockout across different CRISPR datasets. Then we matched Stem.Sig to this gene list and found Stem.Sig significantly enriched 3% top-ranked genes from the list (P = 0.03), including EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, GCLC, KXD1, SPRR1B, PTMA, YBX1, CYP27B1, NACA, PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2, and ZBTB43, which were potential therapeutic targets.

CONCLUSIONS

We revealed a robust link between cancer stemness and immunotherapy resistance and developed a promising signature, Stem.Sig, which showed increased performance in comparison to other signatures regarding ICI response prediction. This signature could serve as a competitive tool for patient selection of immunotherapy. Meanwhile, our study potentially paves the way for overcoming immune resistance by targeting stemness-associated genes.

摘要

背景

尽管免疫检查点抑制剂(ICI)被认为是癌症治疗的突破,但只有有限比例的患者从中受益。癌症干性可能是 ICI 耐药的潜在罪魁祸首,但缺乏直接的临床证据。

方法

收集并分析了来自接受 ICI 治疗的患者的公开可用的 scRNA-Seq 数据集,以阐明癌症干性与 ICI 反应之间的关联。使用包括 34 个 scRNA-Seq 数据集、癌症基因组图谱(TCGA)泛癌队列和 10 个 ICI 转录组队列在内的大规模泛癌数据开发和验证了一种新的干性标志物(Stem.Sig)。使用筛选潜在免疫治疗靶点的 17 个 CRISPR 数据集进一步探讨了 Stem.Sig 基因的治疗价值。

结果

通过 CytoTRACE 评估的癌症干性与黑色素瘤和基底细胞癌的 ICI 耐药性显著相关(均 P < 0.001)。Stem.Sig 与抗肿瘤免疫呈显著负相关,而与肿瘤内异质性(ITH)/总突变负荷(TMB)呈正相关。基于该标志物,机器学习模型在验证集和测试集中对 ICI 反应的 AUC 分别为 0.71。值得注意的是,与之前已建立的良好标志物相比,Stem.Sig 在多种癌症中具有更好的预测性能。此外,我们生成了一个按每个基因平均效应排序的基因列表,以增强不同 CRISPR 数据集中遗传敲除后的肿瘤免疫反应。然后我们将 Stem.Sig 与该基因列表匹配,发现 Stem.Sig 显著富集了该列表中 3%的顶级基因(P = 0.03),包括 EMC3、BECN1、VPS35、PCBP2、VPS29、PSMF1、GCLC、KXD1、SPRR1B、PTMA、YBX1、CYP27B1、NACA、PPP1CA、TCEB2、PIGC、NR0B2、PEX13、SERF2 和 ZBTB43,它们可能是潜在的治疗靶点。

结论

我们揭示了癌症干性与免疫治疗耐药性之间的牢固联系,并开发了一种有前途的标志物 Stem.Sig,与其他标志物相比,它在预测 ICI 反应方面表现出更高的性能。该标志物可作为免疫治疗患者选择的竞争工具。同时,我们的研究可能为通过靶向干性相关基因克服免疫抵抗铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c86a/9052621/1ed3c4ea23f2/13073_2022_1050_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验