Suppr超能文献

分数量子振荡器与振动光谱中的无序现象

Fractional quantum oscillator and disorder in the vibrational spectra.

作者信息

Stephanovich V A, Kirichenko E V, Dugaev V K, Sauco Jackie Harjani, Brito Belén López

机构信息

Institute of Physics, University of Opole, ul. Oleska 48, 45-052, Opole, Poland.

Department of Physics and Medical Engineering, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959, Rzeszów, Poland.

出版信息

Sci Rep. 2022 Jul 22;12(1):12540. doi: 10.1038/s41598-022-16597-2.

Abstract

We study the role of disorder in the vibration spectra of molecules and atoms in solids. This disorder may be described phenomenologically by a fractional generalization of ordinary quantum-mechanical oscillator problem. To be specific, this is accomplished by the introduction of a so-called fractional Laplacian (Riesz fractional derivative) to the Scrödinger equation with three-dimensional (3D) quadratic potential. To solve the obtained 3D spectral problem, we pass to the momentum space, where the problem simplifies greatly as fractional Laplacian becomes simply [Formula: see text], k is a modulus of the momentum vector and [Formula: see text] is Lévy index, characterizing the degree of disorder. In this case, [Formula: see text] corresponds to the strongest disorder, while [Formula: see text] to the weakest so that the case [Formula: see text] corresponds to "ordinary" (i.e. that without fractional derivatives) 3D quantum harmonic oscillator. Combining analytical (variational) and numerical methods, we have shown that in the fractional (disordered) 3D oscillator problem, the famous orbital momentum degeneracy is lifted so that its energy starts to depend on orbital quantum number l. These features can have a strong impact on the physical properties of many solids, ranging from multiferroics to oxide heterostructures, which, in turn, are usable in modern microelectronic devices.

摘要

我们研究无序在固体中分子和原子振动光谱中的作用。这种无序可以通过对普通量子力学振子问题进行分数阶推广来唯象地描述。具体而言,这是通过在具有三维(3D)二次势的薛定谔方程中引入所谓的分数阶拉普拉斯算子(里斯分数阶导数)来实现的。为了解决得到的三维光谱问题,我们转换到动量空间,在那里问题大大简化,因为分数阶拉普拉斯算子变为简单的[公式:见原文],k是动量矢量的模,[公式:见原文]是 Lévy 指数,表征无序程度。在这种情况下,[公式:见原文]对应最强的无序,而[公式:见原文]对应最弱的无序,使得[公式:见原文]的情况对应“普通”(即没有分数阶导数)的三维量子谐振子。结合解析(变分)和数值方法,我们表明在分数阶(无序)三维振子问题中,著名的轨道角动量简并被消除,其能量开始依赖于轨道量子数l。这些特征可能对许多固体的物理性质产生强烈影响,从多铁性材料到氧化物异质结构,而这些反过来又可用于现代微电子器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/203d/9307824/e37185f4f2c9/41598_2022_16597_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验