Suppr超能文献

鉴定重编程过程中神经胚层谱系特异性祖细胞相关的 microRNAs。

Identification of microRNAs related with neural germ layer lineage-specific progenitors during reprogramming.

机构信息

Department of Histology and Embryology, Harbin Medical University, Harbin, 150086, China.

Department of Histology and Embryology, Harbin Medical University (Daqing), Daqing, 163319, China.

出版信息

J Mol Histol. 2022 Aug;53(4):623-634. doi: 10.1007/s10735-022-10082-w. Epub 2022 Jul 23.

Abstract

Differentiated cells can be reprogrammed to embryonic stem cell-like cells called induced pluripotent stem cells (iPSCs), in which the natural developmental differentiation process is reversed. It is unclear whether the multi-lineage cells can be isolated and identified during reprogramming. In the current study, we detected the expression of lineage markers, isolated neural lineages, and identified the related microRNAs during iPSC formation. Our results demonstrated that a neuroectoderm appeared earlier than mesoderm and definitive endoderm before forming colonies when mouse embryonic fibroblasts were subjected to iPSC formation using transcription factors (TFs). On day 3, the cells expressed Sox1 and Nestin and had ultrastructure consistent with the transition to identity neural germ layer lineage. Fluorescence-activated cell sorting analysis revealed a peak (40%) in neural progenitor marker-positive cells. When subsequently cultured in a neural precursor cell medium, these cells proliferated slowly, became round and aggregated, generating into neurons and glia. Genome-wide microRNA (miRNA) analysis identified 45 differentially regulated miRNAs. Molecular network analysis demonstrated that these miRNAs validated 6,047 experimental mRNA targets. The GO functional annotation analysis of mRNA targets revealed that most genes were related to neurogenesis, such as growth cone, neuronal cell body, neuron projection, and cell junction synapse. The network of protein-protein interactions was observed, which demonstrated that key nodes of neural lineage reprogramming-associated targets were Sall1, Foxa2, Nf2, Ctnnb1, Shh, and Bmpr1a. Therefore, these data suggested that TFs can drive the reprogramming of somatic cells towards a pluripotent state via neuroectoderm. Moreover, the neural lineage reprogramming system can address how miRNAs influence their target sites.

摘要

分化细胞可以被重编程为诱导多能干细胞(iPSCs),类似于胚胎干细胞,其中自然的发育分化过程被逆转。目前尚不清楚在重编程过程中是否可以分离和鉴定多能细胞。在本研究中,我们检测了谱系标记物的表达,分离了神经谱系,并鉴定了 iPSC 形成过程中的相关 microRNA。我们的结果表明,在使用转录因子(TFs)进行 iPSC 形成时,当小鼠胚胎成纤维细胞形成集落之前,神经外胚层比中胚层和终末内胚层更早出现。第 3 天,细胞表达 Sox1 和 Nestin,并具有与向神经胚层谱系转化一致的超微结构。荧光激活细胞分选分析显示神经祖细胞标记阳性细胞的峰值(40%)。当随后在神经前体细胞培养基中培养时,这些细胞增殖缓慢,变成圆形并聚集,生成神经元和神经胶质细胞。全基因组 microRNA(miRNA)分析鉴定出 45 个差异调节的 miRNA。分子网络分析表明,这些 miRNA 验证了 6047 个实验 mRNA 靶标。mRNA 靶标的 GO 功能注释分析表明,大多数基因与神经发生有关,如生长锥、神经元胞体、神经元突起和细胞连接突触。观察到蛋白质-蛋白质相互作用网络,表明神经谱系重编程相关靶标的关键节点是 Sall1、Foxa2、Nf2、Ctnnb1、Shh 和 Bmpr1a。因此,这些数据表明,TFs 可以通过神经外胚层驱动体细胞向多能状态的重编程。此外,神经谱系重编程系统可以解决 microRNA 如何影响其靶位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验