Edward and Sandra Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
Skirball Institute of Biomolecular Medicine, Department of Cell Biology and Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU School of Medicine, New York, NY 10016, USA.
Curr Opin Genet Dev. 2018 Oct;52:77-85. doi: 10.1016/j.gde.2018.06.002. Epub 2018 Jun 17.
The discovery of induced pluripotent stem cells (iPSCs) has solidified the concept of transcription factors as major players in controlling cell identity and provided a tractable tool to study how somatic cell identity can be dismantled and pluripotency established. A number of landmark studies have established hallmarks and roadmaps of iPSC formation by describing relative kinetics of transcriptional, protein and epigenetic changes, including alterations in DNA methylation and histone modifications. Recently, technological advancements such as single-cell analyses, high-resolution genome-wide chromatin assays and more efficient reprogramming systems have been used to challenge and refine our understanding of the reprogramming process. Here, we will outline novel insights into the molecular mechanisms underlying iPSC formation, focusing on how the core reprogramming factors OCT4, KLF4, SOX2 and MYC (OKSM) drive changes in gene expression, chromatin state and 3D genome topology. In addition, we will discuss unexpected consequences of reprogramming factor expression in in vitro and in vivo systems that may point towards new applications of iPSC technology.
诱导多能干细胞(iPSCs)的发现巩固了转录因子作为控制细胞身份的主要因素这一概念,并为研究体细胞身份如何被瓦解以及如何建立多能性提供了一种可行的工具。许多具有里程碑意义的研究通过描述转录、蛋白质和表观遗传变化的相对动力学,包括 DNA 甲基化和组蛋白修饰的改变,确定了 iPSC 形成的特征和路线图。最近,单细胞分析、高分辨率全基因组染色质分析和更有效的重编程系统等技术进步已被用于挑战和完善我们对重编程过程的理解。在这里,我们将概述 iPSC 形成的分子机制的新见解,重点讨论核心重编程因子 OCT4、KLF4、SOX2 和 MYC(OKSM)如何驱动基因表达、染色质状态和 3D 基因组拓扑结构的变化。此外,我们还将讨论在体外和体内系统中重编程因子表达的意外后果,这些后果可能为 iPSC 技术的新应用指明方向。