Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
J Mol Biol. 2022 Oct 15;434(19):167755. doi: 10.1016/j.jmb.2022.167755. Epub 2022 Jul 21.
Linker histone H1, facilitated by its chaperones, plays an essential role in regulating gene expression by maintaining chromatin's higher-order structure and epigenetic state. However, we know little about the structural mechanism of how the chaperones recognize linker histones and conduct their function. Here, we used biophysical and biochemical methods to investigate the recognition of human linker histone isoform H1.10 by the TAF-Iβ chaperone. Both H1.10 and TAF-Iβ proteins consist of folded cores and disordered tails. We found that H1.10 formed a complex with TAF-Iβ in a 2:2 stoichiometry. Using distance restraints obtained from methyl-TROSY NMR and spin labels, we built a structural model for the core region of the complex. In the model, the TAF-Iβ core interacts with the globular domain of H1.10 mainly through electrostatic interactions. We confirmed the interactions by measuring the effects of mutations on the binding affinity. A comparison of our structural model with the chromatosome structure shows that TAF-Iβ blocks the DNA binding sites of H1.10. Our study provides insights into the structural mechanism whereby TAF-Iβ functions as a chaperone by preventing H1.10 from interacting with DNA directly.
连接组蛋白 H1 由其伴侣蛋白协助,通过维持染色质的高级结构和表观遗传状态,在调节基因表达中发挥着重要作用。然而,我们对伴侣蛋白如何识别连接组蛋白并发挥其功能的结构机制知之甚少。在这里,我们使用生物物理和生化方法研究了 TAF-Iβ 伴侣蛋白对人源连接组蛋白 H1.10 的识别。H1.10 和 TAF-Iβ 蛋白均由折叠核心和无规卷曲尾巴组成。我们发现 H1.10 与 TAF-Iβ 以 2:2 的化学计量比形成复合物。利用从甲基-TROSY NMR 和自旋标记获得的距离限制,我们构建了复合物核心区域的结构模型。在该模型中,TAF-Iβ 核心主要通过静电相互作用与 H1.10 的球形结构域相互作用。我们通过测量突变对结合亲和力的影响来验证这些相互作用。将我们的结构模型与染色质小体结构进行比较表明,TAF-Iβ 通过阻止 H1.10 与 DNA 的直接相互作用来发挥其伴侣蛋白的功能。我们的研究为 TAF-Iβ 通过阻止 H1.10 与 DNA 的直接相互作用来发挥其伴侣蛋白功能的结构机制提供了深入的了解。