Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA.
Nature. 2021 Jan;589(7841):293-298. doi: 10.1038/s41586-020-3032-z. Epub 2020 Dec 9.
H1 linker histones are the most abundant chromatin-binding proteins. In vitro studies indicate that their association with chromatin determines nucleosome spacing and enables arrays of nucleosomes to fold into more compact chromatin structures. However, the in vivo roles of H1 are poorly understood. Here we show that the local density of H1 controls the balance of repressive and active chromatin domains by promoting genomic compaction. We generated a conditional triple-H1-knockout mouse strain and depleted H1 in haematopoietic cells. H1 depletion in T cells leads to de-repression of T cell activation genes, a process that mimics normal T cell activation. Comparison of chromatin structure in normal and H1-depleted CD8 T cells reveals that H1-mediated chromatin compaction occurs primarily in regions of the genome containing higher than average levels of H1: the chromosome conformation capture (Hi-C) B compartment and regions of the Hi-C A compartment marked by PRC2. Reduction of H1 stoichiometry leads to decreased H3K27 methylation, increased H3K36 methylation, B-to-A-compartment shifting and an increase in interaction frequency between compartments. In vitro, H1 promotes PRC2-mediated H3K27 methylation and inhibits NSD2-mediated H3K36 methylation. Mechanistically, H1 mediates these opposite effects by promoting physical compaction of the chromatin substrate. Our results establish H1 as a critical regulator of gene silencing through localized control of chromatin compaction, 3D genome organization and the epigenetic landscape.
H1 连接组蛋白是含量最丰富的染色质结合蛋白。体外研究表明,它们与染色质的结合决定了核小体的间隔,使核小体阵列折叠成更紧凑的染色质结构。然而,H1 的体内作用知之甚少。在这里,我们发现 H1 的局部密度通过促进基因组紧缩来控制抑制性和活性染色质区域之间的平衡。我们生成了一种条件性三重 H1 敲除小鼠品系,并在造血细胞中耗尽 H1。T 细胞中 H1 的耗竭导致 T 细胞激活基因的去抑制,这一过程模拟了正常的 T 细胞激活。比较正常和 H1 耗竭的 CD8 T 细胞中的染色质结构揭示,H1 介导的染色质紧缩主要发生在基因组中 H1 水平高于平均水平的区域:染色体构象捕获(Hi-C)B 区室和 PRC2 标记的 Hi-C A 区室的区域。H1 化学计量的减少导致 H3K27 甲基化减少,H3K36 甲基化增加,B 区室到 A 区室的转移以及区室之间相互作用频率的增加。在体外,H1 促进 PRC2 介导的 H3K27 甲基化和抑制 NSD2 介导的 H3K36 甲基化。在机制上,H1 通过促进染色质底物的物理紧缩来介导这些相反的效应。我们的研究结果确立了 H1 作为通过局部控制染色质紧缩、三维基因组组织和表观遗传景观来调节基因沉默的关键调节因子。