Suppr超能文献

基于无限服务器队列网络二阶统计量的基因调控网络中的噪声耗散。

Noise dissipation in gene regulatory networks via second order statistics of networks of infinite server queues.

机构信息

Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.

School of Mathematics, University of Bristol, Bristol, BS81UG, UK.

出版信息

J Math Biol. 2022 Jul 23;85(2):14. doi: 10.1007/s00285-022-01781-9.

Abstract

RNA and protein concentrations within cells constantly fluctuate. Some molecular species typically have very low copy numbers, so stochastic changes in their abundances can dramatically alter cellular concentration levels. Such noise can be harmful through constrained functionality or reduced efficiency. Gene regulatory networks have evolved to be robust in the face of noise. We obtain exact analytical expressions for noise dissipation in an idealised stochastic model of a gene regulatory network. We show that noise decays exponentially fast. The decay rate for RNA molecular counts is given by the integral of the tail of the cumulative distribution function of the degradation time. For proteins, it is given by the slowest rate-limiting step of RNA degradation or proteolytic breakdown. This is intuitive because memory of the chemical composition of the system is manifested through molecular persistence. The results are obtained by analysing a non-standard tandem of infinite server queues, in which the number of customers present in one queue modulates the arrival rate into the next.

摘要

细胞内的 RNA 和蛋白质浓度不断波动。有些分子种类的拷贝数通常非常低,因此它们丰度的随机变化会显著改变细胞内的浓度水平。这种噪声可能会通过限制功能或降低效率而产生危害。基因调控网络已经进化到能够在面对噪声时保持稳健。我们获得了理想的基因调控网络随机模型中噪声耗散的精确解析表达式。我们表明,噪声呈指数衰减。RNA 分子计数的衰减率由降解时间累积分布函数尾部的积分给出。对于蛋白质,它由 RNA 降解或蛋白水解分解的最慢限速步骤给出。这是直观的,因为系统化学成分的记忆通过分子持久性表现出来。结果是通过分析一个非标准的无限服务器队列串联得到的,其中一个队列中存在的顾客数量调节了进入下一个队列的到达率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验