Suppr超能文献

基因网络中的转化串扰。

Translational cross talk in gene networks.

机构信息

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

出版信息

Biophys J. 2013 Jun 4;104(11):2564-72. doi: 10.1016/j.bpj.2013.04.049.

Abstract

It has been shown experimentally that competition for limited translational resources by upstream mRNAs can lead to an anticorrelation between protein counts. Here, we investigate a stochastic model for this phenomenon, in which gene transcripts of different types compete for a finite pool of ribosomes. Throughout, we utilize concepts from the theory of multiclass queues to describe a qualitative shift in protein count statistics as the system transitions from being underloaded (ribosomes exceed transcripts in number) to being overloaded (transcripts exceed ribosomes in number). The exact analytical solution of a simplified stochastic model, in which the numbers of competing mRNAs and ribosomes are fixed, exhibits weak positive correlations between steady-state protein counts when total transcript count slightly exceeds ribosome count, whereas the solution can exhibit strong negative correlations when total transcript count significantly exceeds ribosome count. Extending this analysis, we find approximate but reasonably accurate solutions for a more realistic model, in which abundances of mRNAs and ribosomes are allowed to fluctuate randomly. Here, ribosomal fluctuations contribute positively and mRNA fluctuations contribute negatively to correlations, and when mRNA fluctuations dominate ribosomal fluctuations, a strong anticorrelation extremum reliably occurs near the transition from the underloaded to the overloaded regime.

摘要

实验表明,上游 mRNA 对有限翻译资源的竞争会导致蛋白质数量之间呈反相关。在这里,我们研究了这种现象的随机模型,其中不同类型的基因转录本竞争有限的核糖体池。在整个过程中,我们利用多类队列理论的概念来描述蛋白质计数统计数据的定性变化,因为系统从欠载(核糖体数量超过转录本数量)过渡到过载(转录本数量超过核糖体数量)。简化随机模型的精确解析解,其中竞争的 mRNA 和核糖体数量是固定的,当总转录本计数略超过核糖体计数时,稳定状态蛋白质计数之间存在微弱的正相关,而当总转录本计数显著超过核糖体计数时,解可以显示出强烈的负相关。扩展此分析,我们为更现实的模型找到近似但相当准确的解,其中允许 mRNA 和核糖体的丰度随机波动。在这里,核糖体波动的影响是正相关,mRNA 波动的影响是负相关,当 mRNA 波动主导核糖体波动时,在从欠载到过载的过渡附近,可靠地出现强烈的反相关极值。

相似文献

1
Translational cross talk in gene networks.
Biophys J. 2013 Jun 4;104(11):2564-72. doi: 10.1016/j.bpj.2013.04.049.
2
Stochastic theory of protein synthesis and polysome: ribosome profile on a single mRNA transcript.
J Theor Biol. 2011 Nov 21;289:36-46. doi: 10.1016/j.jtbi.2011.08.023. Epub 2011 Aug 26.
3
A model for competition for ribosomes in the cell.
J R Soc Interface. 2016 Mar;13(116). doi: 10.1098/rsif.2015.1062.
4
A max-plus model of ribosome dynamics during mRNA translation.
J Theor Biol. 2012 Jun 21;303:128-40. doi: 10.1016/j.jtbi.2012.03.007. Epub 2012 Mar 16.
6
Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide.
Mol Cell. 2017 Jul 6;67(1):71-83.e7. doi: 10.1016/j.molcel.2017.05.021. Epub 2017 Jun 15.
7
Dynamics of ribosomes in mRNA translation under steady- and nonsteady-state conditions.
Phys Rev E. 2020 Jun;101(6-1):062404. doi: 10.1103/PhysRevE.101.062404.
9
Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes.
Nat Commun. 2018 Feb 15;9(1):695. doi: 10.1038/s41467-018-02898-6.
10
Pimp My Ribosome: Ribosomal Protein Paralogs Specify Translational Control.
Trends Genet. 2018 Nov;34(11):832-845. doi: 10.1016/j.tig.2018.08.004. Epub 2018 Sep 5.

引用本文的文献

1
Predictive genetic circuit design for phenotype reprogramming in plants.
Nat Commun. 2025 Jan 16;16(1):715. doi: 10.1038/s41467-025-56042-2.
2
A mathematical framework for analysing particle flow in a network with multiple pools.
R Soc Open Sci. 2024 May 8;11(5):231588. doi: 10.1098/rsos.231588. eCollection 2024 May.
3
Analysis of a detailed multi-stage model of stochastic gene expression using queueing theory and model reduction.
Math Biosci. 2024 Jul;373:109204. doi: 10.1016/j.mbs.2024.109204. Epub 2024 May 6.
4
Solving stochastic gene-expression models using queueing theory: A tutorial review.
Biophys J. 2024 May 7;123(9):1034-1057. doi: 10.1016/j.bpj.2024.04.004. Epub 2024 Apr 9.
5
The effect of microRNA on protein variability and gene expression fidelity.
Biophys J. 2023 Mar 7;122(5):905-923. doi: 10.1016/j.bpj.2023.01.027. Epub 2023 Jan 25.
6
Bacterial degrons in synthetic circuits.
Open Biol. 2022 Aug;12(8):220180. doi: 10.1098/rsob.220180. Epub 2022 Aug 17.
7
Accelerating Whole-Cell Simulations of mRNA Translation Using a Dedicated Hardware.
ACS Synth Biol. 2021 Dec 17;10(12):3489-3506. doi: 10.1021/acssynbio.1c00415. Epub 2021 Nov 23.
8
Picking the right metaphors for addressing microbial systems: economic theory helps understanding biological complexity.
Int Microbiol. 2021 Nov;24(4):507-519. doi: 10.1007/s10123-021-00194-w. Epub 2021 Jul 16.
9
Prediction of Cellular Burden with Host-Circuit Models.
Methods Mol Biol. 2021;2229:267-291. doi: 10.1007/978-1-0716-1032-9_13.
10
Whole cell biophysical modeling of codon-tRNA competition reveals novel insights related to translation dynamics.
PLoS Comput Biol. 2020 Jul 10;16(7):e1008038. doi: 10.1371/journal.pcbi.1008038. eCollection 2020 Jul.

本文引用的文献

2
Computing with competition in biochemical networks.
Phys Rev Lett. 2012 Nov 16;109(20):208102. doi: 10.1103/PhysRevLett.109.208102. Epub 2012 Nov 13.
3
Crosstalk between endogenous and synthetic components--synthetic signaling meets endogenous components.
Biotechnol J. 2012 Jul;7(7):846-55. doi: 10.1002/biot.201100487. Epub 2012 May 31.
4
Foundations for the design and implementation of synthetic genetic circuits.
Nat Rev Genet. 2012 May 18;13(6):406-20. doi: 10.1038/nrg3227.
5
Synthetic biology: an emerging engineering discipline.
Annu Rev Biomed Eng. 2012;14:155-78. doi: 10.1146/annurev-bioeng-071811-150118. Epub 2012 May 7.
7
Using gene expression noise to understand gene regulation.
Science. 2012 Apr 13;336(6078):183-7. doi: 10.1126/science.1216379.
8
Competition for catalytic resources alters biological network dynamics.
Phys Rev Lett. 2012 Jan 6;108(1):018102. doi: 10.1103/PhysRevLett.108.018102. Epub 2012 Jan 5.
9
Queueing up for enzymatic processing: correlated signaling through coupled degradation.
Mol Syst Biol. 2011 Dec 20;7:561. doi: 10.1038/msb.2011.94.
10
How molecular competition influences fluxes in gene expression networks.
PLoS One. 2011;6(12):e28494. doi: 10.1371/journal.pone.0028494. Epub 2011 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验