Suppr超能文献

结直肠癌尿液生物标志物的鉴定:在资源有限的环境中开发结直肠癌筛查试验。

Identification of urinary biomarkers of colorectal cancer: Towards the development of a colorectal screening test in limited resource settings.

机构信息

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.

Department of Medicine, University of Alberta, Edmonton, AB, Canada.

出版信息

Cancer Biomark. 2023;36(1):17-30. doi: 10.3233/CBM-220034.

Abstract

BACKGROUND

African colorectal cancer (CRC) rates are rising rapidly. A low-cost CRC screening approach is needed to identify CRC from non-CRC patients who should be sent for colonoscopy (a scarcity in Africa).

OBJECTIVE

To identify urinary metabolite biomarkers that, combined with easy-to-measure clinical variables, would identify patients that should be further screened for CRC by colonoscopy. Ideal metabolites would be water-soluble and easily translated into a sensitive, low-cost point-of-care (POC) test.

METHODS

Liquid-chromatography mass spectrometry (LC-MS/MS) was used to quantify 142 metabolites in spot urine samples from 514 Nigerian CRC patients and healthy controls. Metabolite concentration data and clinical characteristics were used to determine optimal sets of biomarkers for identifying CRC from non-CRC subjects.

RESULTS

Our statistical analysis identified N1, N12-diacetylspermine, hippurate, p-hydroxyhippurate, and glutamate as the best metabolites to discriminate CRC patients via POC screening. Logistic regression modeling using these metabolites plus clinical data achieved an area under the receiver-operator characteristic (AUCs) curves of 89.2% for the discovery set, and 89.7% for a separate validation set.

CONCLUSIONS

Effective urinary biomarkers for CRC screening do exist. These results could be transferred into a simple, POC urinary test for screening CRC patients in Africa.

摘要

背景

非洲结直肠癌(CRC)的发病率正在迅速上升。需要一种低成本的 CRC 筛查方法来识别应该接受结肠镜检查的 CRC 患者和非 CRC 患者(在非洲这种检查稀缺)。

目的

确定尿液代谢生物标志物,这些标志物与易于测量的临床变量相结合,可以识别需要进一步接受结肠镜检查筛查 CRC 的患者。理想的代谢物应该是水溶性的,并且易于转化为敏感、低成本的即时检测(POC)测试。

方法

使用液相色谱-质谱联用(LC-MS/MS)定量分析了 514 名尼日利亚 CRC 患者和健康对照者的尿液样本中的 142 种代谢物。代谢物浓度数据和临床特征用于确定用于通过 POC 筛查从非 CRC 受试者中识别 CRC 的最佳生物标志物组合。

结果

我们的统计分析确定 N1、N12-二乙酰精胺、马尿酸、对羟基马尿酸和谷氨酸是通过 POC 筛查区分 CRC 患者的最佳代谢物。使用这些代谢物加上临床数据进行逻辑回归建模,在发现组中的受试者工作特征(ROC)曲线下面积(AUCs)为 89.2%,在独立验证组中的 AUCs 为 89.7%。

结论

CRC 筛查的有效尿液生物标志物确实存在。这些结果可以转化为一种简单的 POC 尿液检测方法,用于筛查非洲的 CRC 患者。

相似文献

3
Metabolomic Profiling Identified Serum Metabolite Biomarkers and Related Metabolic Pathways of Colorectal Cancer.
Dis Markers. 2021 Dec 7;2021:6858809. doi: 10.1155/2021/6858809. eCollection 2021.
4
Specificity of metabolic colorectal cancer biomarkers in serum through effect size.
Metabolomics. 2020 Aug 13;16(8):88. doi: 10.1007/s11306-020-01707-w.
6
Urinary Metabolomics to Identify a Unique Biomarker Panel for Detecting Colorectal Cancer: A Multicenter Study.
Cancer Epidemiol Biomarkers Prev. 2019 Aug;28(8):1283-1291. doi: 10.1158/1055-9965.EPI-18-1291. Epub 2019 May 31.
7
LC-MS analysis of chiral amino acids in human urine reveals D-amino acids as potential biomarkers for colorectal cancer.
J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Sep 15;1245:124270. doi: 10.1016/j.jchromb.2024.124270. Epub 2024 Aug 5.
8
Altered Polyamine Profiles in Colorectal Cancer.
Anticancer Res. 2018 Jun;38(6):3601-3607. doi: 10.21873/anticanres.12634.
9
Proteins in stool as biomarkers for non-invasive detection of colorectal adenomas with high risk of progression.
J Pathol. 2020 Mar;250(3):288-298. doi: 10.1002/path.5369. Epub 2020 Jan 13.
10
Global and targeted serum metabolic profiling of colorectal cancer progression.
Cancer. 2017 Oct 15;123(20):4066-4074. doi: 10.1002/cncr.30829. Epub 2017 Jun 22.

引用本文的文献

2
Towards Automated Testing of Kynurenine for Point-of-Care Metabolomics.
Methods Protoc. 2025 Jun 1;8(3):56. doi: 10.3390/mps8030056.
3
Omics technologies as powerful approaches to unravel colorectal cancer complexity and improve its management.
Mol Cells. 2025 May;48(5):100200. doi: 10.1016/j.mocell.2025.100200. Epub 2025 Feb 28.
4
From multi-omics to predictive biomarker: AI in tumor microenvironment.
Front Immunol. 2024 Dec 23;15:1514977. doi: 10.3389/fimmu.2024.1514977. eCollection 2024.

本文引用的文献

1
Global pattern and trends of colorectal cancer survival: a systematic review of population-based registration data.
Cancer Biol Med. 2021 Sep 6;19(2):175-86. doi: 10.20892/j.issn.2095-3941.2020.0634.
2
Global colorectal cancer burden in 2020 and projections to 2040.
Transl Oncol. 2021 Oct;14(10):101174. doi: 10.1016/j.tranon.2021.101174. Epub 2021 Jul 6.
4
Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement.
JAMA. 2021 May 18;325(19):1965-1977. doi: 10.1001/jama.2021.6238.
6
Comprehensive Targeted Metabolomic Assay for Urine Analysis.
Anal Chem. 2020 Aug 4;92(15):10627-10634. doi: 10.1021/acs.analchem.0c01682. Epub 2020 Jul 21.
7
Fecal DNA Testing for Colorectal Cancer Screening.
Annu Rev Med. 2020 Jan 27;71:59-69. doi: 10.1146/annurev-med-103018-123125. Epub 2019 Aug 26.
8
Urinary Metabolomics to Identify a Unique Biomarker Panel for Detecting Colorectal Cancer: A Multicenter Study.
Cancer Epidemiol Biomarkers Prev. 2019 Aug;28(8):1283-1291. doi: 10.1158/1055-9965.EPI-18-1291. Epub 2019 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验