University of South Carolina, Columbia, SC, USA.
ElectroBioDyne LLC, Aiken, SC, USA; Savannah River National Lab., Aiken, SC 29803.
Bioelectrochemistry. 2022 Oct;147:108210. doi: 10.1016/j.bioelechem.2022.108210. Epub 2022 Jul 18.
Monitoring microbial activity is essential for industrial and environmental applications to proceed efficiently. To minimize time and labor-intensive monitoring, a new paradigm is required for in-situ, real time analysis. Since bioconversion of organics is accomplished by microorganisms through the oxidation of feedstocks linked to the reduction of electron acceptors, microorganisms can be viewed as electrochemical catalysts. In this respect, cell membranes have an electrical potential, which is analogous to a conventional capacitor and linked dynamically to cellular activity. Here we demonstrate the use of electrochemical impedance spectrometry (EIS) and cyclic voltammetry (CV) for monitoring microbial metabolic activity in real time, in-situ. The effect of organic electron donors as a function of concentration to the physiological status of strains of Shewanella oneidensis was determined. In this study, the pyomelanin overproducer (S. oneidensis ΔhmgA) and the pyomelanin deficient mutant (S. oneidensis ΔmelA) were chosen due to different surface electrochemical characteristics along with differences in oxygen utilization efficiency. CV, relative admittance, phase shift and permittivity changed with growth status and correlated with electron flow from organic carbon sources and terminal electron acceptor availability. This work offers a novel and inexpensive approach to real time monitoring with the advantage of abundant data.
监测微生物的活动对于工业和环境应用的高效进行至关重要。为了最大限度地减少时间和劳动密集型的监测,需要一种新的范例来进行原位、实时分析。由于有机物的生物转化是通过微生物通过与电子受体还原相关的进料氧化来完成的,因此微生物可以被视为电化学催化剂。在这方面,细胞膜具有电势,这类似于传统的电容器,并与细胞活动动态相关联。在这里,我们展示了使用电化学阻抗谱(EIS)和循环伏安法(CV)实时原位监测微生物代谢活性的方法。研究了有机电子供体作为浓度函数对希瓦氏菌属(Shewanella oneidensis)菌株生理状态的影响。在这项研究中,由于表面电化学特性以及氧气利用效率的差异,选择了过产黑色素体的(S. oneidensis ΔhmgA)和黑色素体缺乏突变体(S. oneidensis ΔmelA)。CV、相对导纳、相移和介电常数随生长状态而变化,并与来自有机碳源和末端电子受体可用性的电子流相关。这项工作提供了一种新颖且廉价的实时监测方法,具有丰富数据的优势。