Zhou Bo, Yan Dongpeng
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 P. R. China
Chem Sci. 2022 May 25;13(25):7429-7436. doi: 10.1039/d2sc01947g. eCollection 2022 Jun 29.
Information security of photonic communications has become an important societal issue and can be greatly improved when photonic signals are propagated through active waveguides with tunable wavelengths in different time and space domains. Moreover, the development of active waveguides that can work efficiently at extreme temperatures is highly desirable but remains a challenge. Herein, we report new types of low-dimensional Zn(ii)-organic halide microcrystals with fluorescence and room-temperature phosphorescence (RTP) dual emission for use as 1D color-tunable active waveguides. Benefiting from strong intermolecular interactions (, hydrogen bonds and π-π interactions), these robust waveguide systems exhibit colorful photonic signals and structural stability at a wide range of extreme simulated temperatures (>300 K), that covers natural conditions on Earth, Mars, and the Moon. Both experimental and theoretical studies demonstrate that the molecular self-assembly can regulate the singlet and triplet excitons to allow thermally assisted spectral separation of fluorescence and RTP, in combination with the single-component standard white-light emission. Therefore, this work demonstrates the first use of metal-organic halide microcrystals as temperature-gating active waveguides with promising implications for high-security information communications and high-resolution micro/nanophotonics.
光子通信的信息安全已成为一个重要的社会问题,当光子信号在不同的时间和空间域中通过具有可调波长的有源波导传播时,信息安全可得到极大改善。此外,非常需要能在极端温度下高效工作的有源波导,但这仍然是一个挑战。在此,我们报道了新型的具有荧光和室温磷光(RTP)双发射的低维Zn(II)-有机卤化物微晶,用作一维颜色可调有源波导。得益于强分子间相互作用(氢键和π-π相互作用),这些坚固的波导系统在广泛的极端模拟温度(>300 K)下表现出多彩的光子信号和结构稳定性,该温度范围涵盖了地球、火星和月球上的自然条件。实验和理论研究均表明,分子自组装可调节单重态和三重态激子,以实现荧光和RTP的热辅助光谱分离,并结合单组分标准白光发射。因此,这项工作首次展示了金属有机卤化物微晶作为温度门控有源波导的应用,对高安全性信息通信和高分辨率微/纳米光子学具有潜在意义。