Zhou Bo, Qi Zhenhong, Dai Meiqi, Xing Chang, Yan Dongpeng
Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Angew Chem Int Ed Engl. 2023 Sep 25;62(39):e202309913. doi: 10.1002/anie.202309913. Epub 2023 Aug 21.
Harnessing the potential of thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) is crucial for developing light-emitting diodes (LEDs), lasers, sensors, and many others. However, effective strategies in this domain are still relatively scarce. This study presents a new approach to achieving highly efficient deep-blue TADF (with a PLQY of 25 %) and low-energy orange RTP (with a PLQY of 90 %) through the fabrication of lead-free hybrid halides. This new class of monomeric and dimeric 0D antimony halides can be facilely synthesized using a bottom-up solution process, requiring only a few seconds to minutes, which offer exceptional stability and nontoxicity. By leveraging the highly adaptable molecular arrangement and crystal packing modes, the hybrid antimony halides demonstrate the ability to self-assemble into regular 1D microrod and 2D microplate morphologies. This self-assembly is facilitated by multiple non-covalent interactions between the inorganic cores and organic shells. Notably, these microstructures exhibit outstanding polarized luminescence and function as low-dimensional optical waveguides with remarkably low optical-loss coefficients. Therefore, this work not only presents a pioneering demonstration of deep-blue TADF in hybrid antimony halides, but also introduces 1D and 2D micro/nanostructures that hold promising potential for applications in white LEDs and low-dimensional photonic systems.
利用热激活延迟荧光(TADF)和室温磷光(RTP)的潜力对于开发发光二极管(LED)、激光器、传感器及许多其他器件至关重要。然而,该领域的有效策略仍然相对匮乏。本研究提出了一种新方法,通过制备无铅混合卤化物来实现高效的深蓝色TADF(外量子效率为25%)和低能量橙色RTP(外量子效率为90%)。这类新型的单体和二聚体零维锑卤化物可以通过自下而上的溶液法轻松合成,只需几秒到几分钟,具有出色的稳定性和无毒特性。通过利用高度可适应的分子排列和晶体堆积模式,混合锑卤化物展现出能够自组装成规则的一维微棒和二维微板形态。这种自组装由无机核与有机壳之间的多种非共价相互作用促成。值得注意的是,这些微观结构表现出出色的偏振发光,并作为具有极低光学损耗系数的低维光波导发挥作用。因此,这项工作不仅展示了混合锑卤化物中深蓝色TADF的开创性实例,还引入了在白色LED和低维光子系统应用中具有广阔前景的一维和二维微/纳米结构。