Prakhya Kanakanagavalli Shravani, Luo Ya, Adkins John, Hu Xiaoyuan, Wang Qing Jun, Whiteheart Sidney W
Department of Molecular and Cellular Biochemistry, College of Medicine University of Kentucky Lexington Kentucky USA.
Gliasoft Milpitas California USA.
Res Pract Thromb Haemost. 2022 Jul 21;6(5):e12755. doi: 10.1002/rth2.12755. eCollection 2022 Jul.
Platelet-fibrin clot contraction is critical for wound closure and maintenance of vessel patency, yet a molecular understanding of the process has lagged because of a lack of flexible quantitative assay systems capable of assaying multiple samples simultaneously.
We devised a sensitive and inexpensive method to assess clot contraction kinetics under multiple conditions.
Clot contraction was measured using time-lapse digital photography, automated image processing with customized software, and detailed kinetic analysis using available commercial programs.
Our system was responsive to alterations in platelet counts and calcium, fibrinogen, and thrombin concentrations, and our analysis detected and defined three phases of platelet-fibrin clot formation: initiation, contraction, and stabilization. Lag time, average contraction velocity, contraction extent, and area under the curve were readily calculated from the data. Using pharmacological agents (blebbistatin and eptifibatide), we confirmed the importance of myosin IIA and the interactions of integrin αβ-fibrinogen/fibrin in clot contraction. As further proof of our system's utility, we showed how 2-deoxyglucose affects contraction, demonstrating the importance of platelet bioenergetics, specifically glycolysis.
Our system is an adaptable platform for assessing the effects of multiple conditions and interventions on clot contraction kinetics in a regular laboratory setting, using readily available materials. The automated image processing software we developed will be made freely available for noncommercial uses. This assay system can be used to directly compare and define the effects of different treatments or genetic manipulations on platelet function and should provide a robust tool for future hemostasis/thrombosis research and therapeutic development.
血小板 - 纤维蛋白凝块收缩对于伤口闭合和血管通畅的维持至关重要,然而由于缺乏能够同时检测多个样本的灵活定量检测系统,对该过程的分子理解一直滞后。
我们设计了一种灵敏且廉价的方法来评估多种条件下的凝块收缩动力学。
使用延时数码摄影、定制软件的自动图像处理以及现有商业程序进行详细的动力学分析来测量凝块收缩。
我们的系统对血小板计数、钙、纤维蛋白原和凝血酶浓度的变化有反应,并且我们的分析检测并定义了血小板 - 纤维蛋白凝块形成的三个阶段:起始、收缩和稳定。从数据中可以轻松计算出延迟时间、平均收缩速度、收缩程度和曲线下面积。使用药理试剂(blebbistatin和依替巴肽),我们证实了肌球蛋白IIA以及整合素αβ - 纤维蛋白原/纤维蛋白相互作用在凝块收缩中的重要性。作为我们系统实用性的进一步证明,我们展示了2 - 脱氧葡萄糖如何影响收缩,证明了血小板生物能量学,特别是糖酵解的重要性。
我们的系统是一个适应性强的平台,可在常规实验室环境中使用现成材料评估多种条件和干预对凝块收缩动力学的影响。我们开发的自动图像处理软件将免费提供用于非商业用途。该检测系统可用于直接比较和定义不同治疗或基因操作对血小板功能的影响,应为未来止血/血栓形成研究和治疗开发提供一个强大的工具。