George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Department of Mechanical Engineering, Lafayette College, Easton, Pennsylvania.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.
Biophys J. 2023 Nov 7;122(21):4123-4134. doi: 10.1016/j.bpj.2023.08.009. Epub 2023 Aug 19.
Contraction of blood clots plays an important role in blood clotting, a natural process that restores hemostasis and regulates thrombosis in the body. Upon injury, a chain of events culminate in the formation of a soft plug of cells and fibrin fibers attaching to wound edges. Platelets become activated and apply contractile forces to shrink the overall clot size, modify clot structure, and mechanically stabilize the clot. Impaired blood clot contraction results in unhealthy volumetric, mechanical, and structural properties of blood clots associated with a range of severe medical conditions for patients with bleeding and thrombotic disorders. Due to the inherent mechanical complexity of blood clots and a confluence of multiple interdependent factors governing clot contraction, the mechanics and dynamics of clot contraction and the interactions with red blood cells (RBCs) remain elusive. Using an experimentally informed, physics-based mesoscale computational model, we probe the dynamic interactions among platelets, fibrin polymers, and RBCs, and examine the properties of contracted blood clots. Our simulations confirm that RBCs strongly affect clot contraction. We find that RBC retention and compaction in thrombi can be solely a result of mechanistic contraction of fibrin mesh due to platelet activity. Retention of RBCs hinders clot contraction and reduces clot contractility. Expulsion of RBCs located closer to clot outer surface results in the development of a dense fibrin shell in thrombus clots commonly observed in experiments. Our simulations identify the essential parameters and interactions that control blood clot contraction process, highlighting its dependence on platelet concentration and the initial clot size. Furthermore, our computational model can serve as a useful tool in clinically relevant studies of hemostasis and thrombosis disorders, and post thrombotic clot lysis, deformation, and breaking.
血液凝块的收缩在血液凝固中起着重要作用,血液凝固是一种自然过程,可恢复止血并调节体内的血栓形成。在受伤时,一系列事件最终导致形成一个柔软的细胞塞和附着在伤口边缘的纤维蛋白纤维。血小板被激活并施加收缩力以缩小整体凝块的大小,改变凝块结构,并机械稳定凝块。血液凝块收缩受损会导致血液凝块的体积、机械和结构特性不健康,与患有出血和血栓形成障碍的患者的一系列严重医疗状况有关。由于血液凝块固有的机械复杂性以及多种相互依存的因素共同控制凝块收缩,因此凝块收缩的力学和动力学以及与红细胞(RBC)的相互作用仍然难以捉摸。使用基于实验信息的基于物理的介观计算模型,我们探测血小板、纤维蛋白聚合物和 RBC 之间的动态相互作用,并检查收缩后的血液凝块的特性。我们的模拟证实 RBC 强烈影响凝块收缩。我们发现血栓中 RBC 的保留和压缩可能仅仅是由于血小板活性引起的纤维蛋白网的机械收缩的结果。RBC 的保留会阻碍凝块收缩并降低凝块的收缩性。靠近血栓外表面的 RBC 的排出会导致在实验中通常观察到的血栓凝块中形成致密的纤维蛋白壳。我们的模拟确定了控制血液凝块收缩过程的基本参数和相互作用,突出了其对血小板浓度和初始凝块大小的依赖性。此外,我们的计算模型可以作为止血和血栓形成障碍以及血栓后凝块溶解、变形和破裂的临床相关研究中的有用工具。