Stein Wolfgang, DeMaegd Margaret L, Benson Abigail M, Roy Rajit S, Vidal-Gadea Andrés G
School of Biological Sciences, Illinois State University, Normal, IL, United States.
Stiftung Alfried Krupp Kolleg Greifswald, Greifswald, Germany.
Front Physiol. 2022 Jul 6;13:947598. doi: 10.3389/fphys.2022.947598. eCollection 2022.
For over a century the nervous system of decapod crustaceans has been a workhorse for the neurobiology community. Many fundamental discoveries including the identification of electrical and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na/K-pump were made using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for neurobiological research is the unique access to large, accessible, and identifiable neurons, and the many distinct and complex behaviors that can be observed in lab settings. Despite these advantages, recent decades have seen work on crustaceans hindered by the lack of molecular and genetic tools required for unveiling the cellular processes contributing to neurophysiology and behavior. In this perspective paper, we argue that the recently sequenced marbled crayfish, , is suited to become a genetic model system for crustacean neuroscience. are parthenogenetic and produce genetically identical offspring, suggesting that germline transformation creates transgenic animal strains that are easy to maintain across generations. Like other decapod crustaceans, marbled crayfish possess large neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled crayfish neurons are accessible through standard physiological and molecular techniques, including single-cell electrophysiology, gene expression measurements, and RNA-interference. We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target genes using the 'Receptor-mediated ovary transduction of cargo' (ReMOT) method. Finally, we consider the impact these approaches will have for neurophysiology research in decapod crustaceans and more broadly across invertebrates.
一个多世纪以来,十足目甲壳类动物的神经系统一直是神经生物学界的研究主力。许多重要发现,包括电突触和抑制性突触的识别、侧向和突触前抑制以及钠钾泵的发现,都是通过龙虾、螃蟹或小龙虾完成的。甲壳类动物在神经生物学研究中的众多优势中,关键在于能够独特地接触到大型、易于获取且可识别的神经元,以及在实验室环境中可以观察到的许多独特而复杂的行为。尽管有这些优势,但近几十年来,甲壳类动物的研究因缺乏揭示神经生理学和行为背后细胞过程所需的分子和遗传工具而受到阻碍。在这篇观点论文中,我们认为最近测序的大理石纹螯虾适合成为甲壳类神经科学的遗传模型系统。大理石纹螯虾是孤雌生殖的,能产生基因相同的后代,这表明种系转化可创建易于跨代维持的转基因动物品系。与其他十足目甲壳类动物一样,大理石纹螯虾在诸如巨尾翻转神经元和口胃神经节中的中央模式生成神经元等经过充分研究的神经回路中拥有大型神经元。我们提供的初步数据表明,通过标准的生理学和分子技术,包括单细胞电生理学、基因表达测量和RNA干扰,可以接触到大理石纹螯虾的神经元。我们讨论了利用“受体介导的卵巢货物转导”(ReMOT)方法通过CRISPR介导的种系操作敲除靶基因的进展。最后,我们考虑这些方法对十足目甲壳类动物以及更广泛的无脊椎动物神经生理学研究的影响。