Suppr超能文献

基于CT的放射组学列线图在纵隔前肿物患者中的开发与验证:术前患者的个体化选择

Development and Validation of a CT-Based Radiomics Nomogram in Patients With Anterior Mediastinal Mass: Individualized Options for Preoperative Patients.

作者信息

Zhou Zhou, Qu Yanjuan, Zhou Yurong, Wang Binchen, Hu Weidong, Cao Yiyuan

机构信息

Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.

Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.

出版信息

Front Oncol. 2022 Jul 8;12:869253. doi: 10.3389/fonc.2022.869253. eCollection 2022.

Abstract

BACKGROUND

To improve the preoperative diagnostic accuracy and reduce the non-therapeutic thymectomy rate, we established a comprehensive predictive nomogram based on radiomics data and computed tomography (CT) features and further explored its potential use in clinical decision-making for anterior mediastinal masses (AMMs).

METHODS

A total of 280 patients, including 280 with unenhanced CT (UECT) and 241 with contrast-enhanced CT (CECT) scans, all of whom had undergone thymectomy for AMM with confirmed histopathology, were enrolled in this study. A total of 1,288 radiomics features were extracted from each labeled mass. The least absolute shrinkage and selection operator model was used to select the optimal radiomics features in the training set to construct the radscore. Multivariate logistic regression analysis was conducted to establish a combined clinical radiographic radscore model, and an individualized prediction nomogram was developed.

RESULTS

In the UECT dataset, radscore and the UECT ratio were selected for the nomogram. The combined model achieved higher accuracy (AUC: 0.870) than the clinical model (AUC: 0.752) for the prediction of therapeutic thymectomy probability. In the CECT dataset, the clinical and combined models achieved higher accuracy (AUC: 0.851 and 0.836, respectively) than the radscore model (AUC: 0.618) for the prediction of therapeutic thymectomy probability.

CONCLUSIONS

In patients who underwent UECT only, a nomogram integrating the radscore and the UECT ratio achieved good accuracy in predicting therapeutic thymectomy in AMMs. However, the use of radiomics in patients with CECT scans did not improve prediction performance; therefore, a clinical model is recommended.

摘要

背景

为提高术前诊断准确性并降低非治疗性胸腺切除术的发生率,我们基于影像组学数据和计算机断层扫描(CT)特征建立了一个综合预测列线图,并进一步探讨其在前纵隔肿块(AMM)临床决策中的潜在应用。

方法

本研究共纳入280例患者,其中280例进行了平扫CT(UECT)检查,241例进行了增强CT(CECT)扫描,所有患者均因AMM接受了胸腺切除术且组织病理学确诊。从每个标记肿块中提取了总共1288个影像组学特征。使用最小绝对收缩和选择算子模型在训练集中选择最佳影像组学特征以构建radscore。进行多变量逻辑回归分析以建立临床影像学radscore联合模型,并开发个体化预测列线图。

结果

在UECT数据集中,列线图选择了radscore和UECT比值。联合模型在预测治疗性胸腺切除术概率方面比临床模型(AUC:0.752)具有更高的准确性(AUC:0.870)。在CECT数据集中,临床模型和联合模型在预测治疗性胸腺切除术概率方面比radscore模型(AUC:0.618)具有更高的准确性(分别为AUC:0.851和0.836)。

结论

在仅接受UECT检查的患者中,整合radscore和UECT比值的列线图在预测AMM的治疗性胸腺切除术中具有良好的准确性。然而,在接受CECT扫描的患者中使用影像组学并未提高预测性能;因此,推荐使用临床模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2fb/9304864/544298dc75de/fonc-12-869253-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验