School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, Henan, China.
School of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia.
Comput Intell Neurosci. 2022 Jul 15;2022:7671967. doi: 10.1155/2022/7671967. eCollection 2022.
Automated malware detection is a prominent issue in the world of network security because of the rising number and complexity of malware threats. It is time-consuming and resource intensive to manually analyze all malware files in an application using traditional malware detection methods. Polymorphism and code obfuscation were created by malware authors to bypass the standard signature-based detection methods used by antivirus vendors. Malware detection using deep learning (DL) approaches has recently been implemented in an effort to address this problem. This study compares the detection of IoT device malware using three current state-of-the-art CNN models that have been pretrained. Large-scale learning performance using GNB, SVM, DT, LR, K-NN, and ensemble classifiers with CNN models is also included in the results. In light of the findings, a pretrained Inception-v3 CNN-based transfer learned model with fine-tuned strategy is proposed to identify IoT device malware by utilizing color image malware display of android Dalvik Executable File (DEX). Inception-v3 retrieves the malware's most important features. After that, a global max-pooling layer is applied, and a SoftMax classifier is used to classify the features. Finally, gradient-weighted class activation mapping (Grad-CAM) along the t-distributed stochastic neighbor embedding (t-SNE) is used to understand the overall performance of the proposed method. The proposed method achieved an accuracy of 98.5% and 91%, respectively, in the binary and multiclass prediction of malware images from IoT devices, exceeding the comparison methods in different evaluation parameters.
自动化恶意软件检测是网络安全领域的一个突出问题,因为恶意软件威胁的数量和复杂性不断增加。使用传统的恶意软件检测方法手动分析应用程序中的所有恶意软件文件既耗时又耗资源。恶意软件作者创建了多态性和代码混淆技术,以绕过防病毒供应商使用的标准基于签名的检测方法。最近,已经实施了使用深度学习 (DL) 方法来检测恶意软件,以解决这个问题。本研究比较了使用三种经过预先训练的当前最先进的 CNN 模型对物联网设备恶意软件的检测。结果还包括使用 GNB、SVM、DT、LR、K-NN 和集成分类器对 CNN 模型进行大规模学习性能的评估。鉴于这些发现,提出了一种基于预训练的 Inception-v3 CNN 的迁移学习模型,该模型采用细调策略,通过利用安卓 Dalvik 可执行文件 (DEX) 的彩色图像恶意软件显示来识别物联网设备恶意软件。Inception-v3 提取恶意软件的最重要特征。然后,应用全局最大池化层,并使用 SoftMax 分类器对特征进行分类。最后,使用梯度加权类激活映射 (Grad-CAM) 沿 t 分布随机邻域嵌入 (t-SNE) 来了解所提出方法的整体性能。所提出的方法在二进制和多类预测中分别实现了 98.5%和 91%的物联网设备恶意软件图像的准确率,在不同的评估参数方面超过了比较方法。